ClinicalTrials.Veeva

Menu

11C-Acetate PET/CT Non-FDG-Avid Tumors

T

Tel Aviv Sourasky Medical Center

Status

Unknown

Conditions

Carcinoma, Lobular
Teratoma
Uterine Malignancies
Indolent Lymphoma
Carcinoma, Hepatocellular
Neuroendocrine Tumors
Lung Cancer
Thyroid Cancer
Soft Tissue Sarcomas
GIST

Study type

Observational

Funder types

Other

Identifiers

NCT00687778
TASMC-08-EE-109-CTIL

Details and patient eligibility

About

F18-FDG is the widely used PET tracer in the routine practice of oncologic disease imaging using the technology of PET-CT. However, FDG-avidity is a characteristic of the individual tumor. There are various types of human malignancies, which are not taking FDG in access. In these cases FDG is not a sensitive tracer of imaging. In search for other tumor PET tracers, C11-Acetate has been shown recently in a few early studies to have a potential value in imaging of non-FDG-avid tumors.

The purpose of the current study is to assess the role of 11C-acetate PET in various tumors, which often are not detected by 18F-FDG and were not widely assessed until now.

Full description

Recent publications have suggested the use of 11C-acetate as another PET tracer for tumor imaging. The accumulation of 11C-acetate in tumor cells is related to the highly active lipid metabolism in the cell membrane associated with tumor growth. 11C-acetate is channeled into the tricarboxylic acid cycle via acetyl coenzyme A and then incorporated via phosphatidylcholine into the cell membrane's phopholipids. Possible biochemical paths of acetate incorporation or accumulation include (a) entering the Krebs cycle from acetyl coenzyme A (acetyl CoA) or as an intermediate metabolite, (b) esterification to form acetyl CoA as a major precursor in ß-oxidation for fatty acid synthesis, (c) combining with glycine in heme synthesis, and (d) through citrate for cholesterol synthesis. Of all of these possible metabolic pathways, participation in free fatty acid (lipid) synthesis is believed to be the dominant method of incorporation in tumors.

The clinical data on the role of 11C-acetate PET in human tumors is being accumulated. Most clinical studies have investigated the role of 11C-acetate PET in detection of prostate cancer. 11C-acetate PET was found valuable in the detection of recurrent prostate cancer, both in the prostate bed, lymph nodes and distant metastases. The main advantage of 11C-acetate is that it does not show physiological accumulation in the urinary bladder as is the case with 18F -FDG and therefore may be appropriate for the detection of active pelvic disease.

Comparing the uptake of 18F-FDG and of 11C-acetate in patients with lung carcinoma, the latter was found superior in the identification of a bronchiolo-alveolar carcinoma which often show no intense FDG uptake.

In the case of hepatic masses, well-differentiated HCC tumors were detect by 11C-acetate while poorly differentiated types were detected by 18F-FDG.

These data suggest that 11C-acetate PET may be valuable in the detection of well-differentiation slow growing tumors and may have a complementary role to the routinely used 18F-FDG.

Enrollment

100 estimated patients

Sex

All

Ages

18 to 90 years old

Volunteers

No Healthy Volunteers

Inclusion criteria

  • patients with newly diagnosed tumors, which are often non-FDG avid or show only low intensity uptake:

    • Soft tissue sarcomas
    • well-differentiated thyroid cancer
    • well-differentiated and bronchoalveolar lung cancer
    • indolent lymphomas
    • neuroendocrine tumors
    • GIST
    • uterine malignancies
    • mucin-producing cancer
    • teratoma
    • hepatoma
    • HCC
    • lobular breast carcinoma
  • Patients over the age of 18

Exclusion criteria

  • patients under the age of 18 years
  • pregnant and lactating women
  • claustrophobic patients

Trial design

100 participants in 1 patient group

1
Description:
100 patients with newly diagnosed tumors, which are often non-FDG avid or show only low intensity uptake: Soft tissue sarcomas, well-differentiated thyroid cancer, well-differentiated and bronchoalveolar lung cancer, indolent lymphomas, neuroendocrine tumors, GIST, uterine malignancies, mucin-producing cancer, teratoma, hepatoma, HCC and lobular breast carcinoma.

Trial contacts and locations

1

Loading...

Central trial contact

Einat Even-Sapir, MD, PhD

Data sourced from clinicaltrials.gov

Clinical trials

Find clinical trialsTrials by location
© Copyright 2025 Veeva Systems