Status and phase
Conditions
Treatments
About
This project is about exploring a novel method to detect ovarian and uterine cancers earlier and better. More precisely, a high-performance radioactive estrogen analog will be used to visualize hormone-sensitive uterine and ovarian tumors using PET imaging. Not only this imaging methodology could improve the whole-body assessment of those diseases, but will also hint clinicians about the optimal course of therapy to undertake.
The lead investigator's team designed in the past years an innovative radioactive estrogen derivative tracer (4FMFES) for the medical imaging modality termed Positron Emission Tomography (PET). The compound was first shown to be safe for human use. Recently, a clinical trial demonstrated that 4FMFES-PET is superior to any existing comparable tracer for detection of hormone-sensitive breast cancer patients. 4FMFES is particularly useful to pinpoint unsuspected metastases early, which allowed better breast cancer patient management and staging. 4FMFES and standard FDG PET imaging were shown to be complementary in breast cancer, the use of both techniques together providing a detection rate nearing 100%. Since ovarian and uterine cancers are about as likely to be targeted by 4FMFES as breast cancer, the use of this novel precision imaging method will be adapted to those other indications.
In general, the sooner a cancer is diagnosed and treated, the better the outcome of a patient will be. Gynecological cancers lack precise screening and detection tools. In particular, while a majority of uterine cancers are relatively well managed, patients burdened with metastatic burden have a much worse prognosis, and precise and early detection of those lesions will greatly help clinicians to better treat those complicated cases. As for ovarian cancers, they are usually devoid of clinical symptoms until late onset, which partly explain the high mortality rate of this disease. Hence, for both diseases, a precision, whole-body imaging technique will allow earlier assessment, followed by earlier intervention, resulting in improved survival rate and better quality of life for patients.
Full description
Knowledge of estrogen receptor (ER) status is of paramount importance for breast cancer management. Mounting evidence supports an equally important role of ER status for uterine and ovarian cancers. Indeed, this prognostic factor was shown to stratify survival and progression-free rates, and to predict efficacy of ER-targeting adjuvant hormone therapy in those cancers. Between 70 and 80% of gynecological cancers expresses ER, akin to what is found in breast cancer. However, ER status is assessed by biopsy and hence is limited to primary lesions and to known, accessible metastases.
Commonly used diagnostic tools for gynecological cancers includes anatomical imaging modalities, such as echography, computed tomography (CT) and magnetic resonance imaging (MRI), with an increased role for metabolic [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) imaging, all yielding suboptimal tumor detection rate and poor specificity. Studies explored combination of FDG-PET/CT with [18F]-16α-fluoroestradiol (FES) PET/CT imaging to obtain whole-body assessment of ER status of both uterine and ovarian cancers, with FDG/FES uptake ratio correlating with grade and stage of disease. However, FES has many shortcomings, including rapid hepatic metabolism and binding to plasma globulins, resulting in a strong blood pool and in high nonspecific uptake, both detrimental to tumor detection.
The investigator's research center have designed a novel ER-targeting PET tracer, 4-fluoro-11β-methoxy-16α-[18F] fluoroestradiol (4FMFES) that addresses those flaws; 4FMFES is 2.5-fold more resistant to metabolism and does not bind to globulins. A phase II study comparing FES with 4FMFES-PET in breast cancer patients showed significantly reduced background with 4FMFES, resulting in improved tumor contrast and in an increased tumor detection rate. Preliminary results showed that addition of 4FMFES-PET to the standard FDG-PET allowed upstaging of ~20% of the breast cancer patients studied so far. Those breast cancer derived data forebode the potential of combined FDG- and 4FMFES-PET for whole-body diagnosis and ER status assessment for uterine and ovarian cancers.
Aim: Launch a phase I/II clinical trial evaluating the use of FDG and 4FMFES PET in ER+ uterine and ovarian cancer patients to enhance diagnostic confidence and accuracy, and to assess whole-body ER status non-invasively.
Specific aims:
The lack of sensitive and accurate imaging tools for uterine and ovarian cancer means that diagnosis is too often achieved at late onset of those diseases. Not only the validation of 4FMFES-PET combined with standard FDG-PET should yield more precise, whole-body diagnostic and staging, but also could predict prognosis and targeted therapy efficacy.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
53 participants in 3 patient groups
Loading...
Central trial contact
Michel Paquette, PhD; Stéphanie Dubreuil
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal