Status and phase
Conditions
Treatments
Study type
Funder types
Identifiers
About
Research Problem:
Bladder cancer is one of the major health concerns of the world. The present methods of diagnosis are: Ultra sound, Cystoscopy, CT scan and urine cytology. All these are stressful to the patients, particularly Cystoscopy which is commonly employed for the follow up of Bladder cancer patients.
Research Significance:
The present study will employ a new photodynamic diagnostic procedure to quantify a certain cancer specific biomarker called Porphyrin, which selectively binds on to the bladder cancer tissues. In this context the present technique offer viable, very easy and reliable table top instrumentation for diagnosis and continual monitoring of disease regression through urine.
Research Objectives:
Research Methodology:
The bladder cancer patients is required to swallow a chemical called ALA (5 Amino levulinic Acid hydrochloride), about 10mg/kg body weight which will play a role of biological indicator. ALA gets metabolized into certain types of porphyrins which selectively bind on to the tumor tissues (for a longer time than the normal tissues). 5ml of blood and one urine samples will be taken before using ALA. The patient must drink water then the urine will be collected after 4, 8 and 12 hours of taking ALA and the samples will be analyzed by photodynamic diagnostic procedure.
Full description
Bladder cancer is one of the most common urologic cancers in Saudi Arabia. its cases represent a significant and challenging part in the daily practice for the majority of urologists practicing. The present methods of diagnosis are: Ultra sound, Cystoscopy, CT-scan etc. All these are stressful to the patients, particularly Cystoscopy which is commonly employed for the follow up of Bladder cancer patients.
In recent years, fluorescence cystoscopy, in contrast to conventional white light cystoscopy, has been investigated as a tool to enhance detection of occult papillary lesions and carcinoma in situ. Recent fluorescence photo detection strategies have used 5-aminolevulinic acid (5-ALA); a precursor of heme biosynthesis.
5-Aminolevulinic acid-enhanced cystoscopy does appear to have improved sensitivities in detecting nonmuscle invasive bladder tumors such as carcinoma in situ . Aminolevulinic acid (ALA) may have a role in other applications in surgical oncology based on its ability to discriminate neoplastic tissue from adjacent normal tissue. Aminolevulinic acid is not a photosensitizer, but rather a metabolic precursor of porphyrin, which is a photosensitizer.
The present study will employ photodynamic diagnostic procedure to quantify only in urine a specific cancer biomarker Porphyrin which selectively binds on to the bladder cancer tissues for a longer time than the normal tissues. In this context, the present study will offer viable, very easy and reliable table top instrumentation for diagnosis and continual monitoring of disease regression.
Enrollment
Sex
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
100 participants in 1 patient group
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal