Status
Conditions
Treatments
About
CT-enhanced scans are routine imaging modality for the diagnosis and follow-up of liver disease. However, this means that patients will receive more radiation dose. Therefore, it is necessary to reduce the radiation dose received by patients as much as possible. Deep learning-based reconstruction algorithms have been introduced to improve image quality recently. For many years, researchers attempt to maintain image quality using an advanced method while reducing radiation dose. Recently, a new deep-learning based iterative reconstruction algorithm, namely artificial intelligence iterative reconstruction (AIIR, United Imaging Healthcare, Shanghai, China) has been introduced. In this study, we evaluate the image and diagnostic qualities of AIIR for low-dose portal vein and delayed phase liver CT with those of a KARL method normally used in standard-dose CT.
Full description
In our hospital, patients with abdominal pelvic cancer undergo follow-up low-dose CT for the evaluation of treatment plan after clinical treatment or disease progress. The raw-data of low-dose CT were collected retrospectively and reconstructed using KARL and AIIR algorithm. In this study, we evaluate the image and diagnostic qualities of AIIR for low-dose portal vein and delayed phase liver CT with those of a KARL method normally used in standard-dose CT.
Enrollment
Sex
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
100 participants in 2 patient groups
Loading...
Central trial contact
Qingshi Zeng
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal