Status
Conditions
Treatments
About
The goal of this prospective cohort study is to learn whether artificial intelligence multimodal fusion prediction models are effective in diagnosing pelvic lymph node metastasis in cervical cancer. The main question it aims to answer is: can artificial intelligence multimodal fusion prediction models improve the accuracy of preoperative diagnosis of pelvic lymph node metastasis in cervical cancer? The researchers compared the AI multimodal fusion prediction model with traditional imaging physician assessments to see if the prediction model could yield more accurate lymph node metastasis determinations. Participants will undergo pelvic MRI after pathologically confirming a diagnosis of cervical cancer, and the results will be used to determine pelvic lymph node metastasis status by the predictive model and the imaging physician, respectively. Subsequent pathology results after surgical lymph node clearance will be used as the gold standard to determine the accuracy of the two preoperative lymph node diagnostic modalities.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
230 participants in 2 patient groups
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal