Status
Conditions
About
Background:
Objectives:
Eligibility:
Design:
Full description
Current estimates indicate that 1 in 110 children are affected with autism. Despite this striking statistic, we remain unable to describe the pathophysiology for autism, and we do not have adequate treatments for autism. The etiologies in most patients with autism are unknown, but emerging evidence supports a causal role of immune activation in autism. Multiple studies provide clear evidence of immune activation in peripheral blood of patients with autism, as demonstrated by elevations in immune markers (IFN-gamma, IL-1RA, IL-6, and TNF-alpha). Studies also demonstrate immune activation in cerebrospinal fluid (CSF) of patients with autism, as evidenced by significant elevations in cytokines and TNF-alpha. Finally, three postmortem brain studies report neuroimmune activation in patients with autism (ages 4-45). Combined, these three postmortem studies show activation of microglia and astroglia through elevations in cytokines, histology and stereology.
While the growing body of literature supporting neuroimmune activation in autism is intriguing, the current results present limitations. First, there are no studies assessing the brains of living patients with autism/ASDs. Second, the most convincing evidence for neuroimmune activation in postmortem brains is extracted almost exclusively from patients with classical autism, where intellectual disability is common. As such, the evidence for neuroimmune activation in higher functioning patients with autism and autism spectrum disorders (ASDs) is less robust.
We propose to determine whether neuroimmune activation is present in the living brains of patients with autism. Furthermore, given the heterogeneity of the autisms , as they are now called, we would like to determine whether neuroimmune activation is detectable in higher versus lower functioning patients with autism/ASDs. We propose to measure neuroimmune activation in the living brains of patients by utilizing positron emission tomography (PET) and the radioligand [(11)C]PBR28. This radioligand binds translocator protein (TSPO), which is over-expressed in activated microglia and reactive astrocytes, and has been demonstrated as a reliable marker of neuroimmune activation in various neuropsychiatric disorders. Because the majority of patients with autism/ASD will require propofol sedation to remain motionless for the two hour scan, we will include a control arm with healthy volunteers without then with propofol in order to determine the effects of propofol on [(11)C]PBR28 uptake. NIH has developed a setup in the clinical center for administering sedation/anesthesia in a safe manner, making this important study possible.
Enrollment
Sex
Ages
Volunteers
Inclusion and exclusion criteria
PATIENTS WITH AUTISM OR ASD (INCLUSION CRITERIA):
HEALTHY VOLUNTEERS (INCLUSION CRITERIA):
EXCLUSION CRITERIA:
PATIENTS WITH AUTISM OR ASD (EXCLUSION CRITERIA):
Healthy Volunteers (Exclusion criteria):
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal