ClinicalTrials.Veeva

Menu

A Study to Compare Adaptive Support Ventilation vs. Volume Controlled Ventilation for Management of Respiratory Failure in Patients With Neuroparalytic Snake Envenomation (ASV vs VCV in)

P

Post Graduate Institute of Medical Education and Research, Chandigarh

Status

Completed

Conditions

Invasive Mechanical Ventilation
Snake Envenomation
Adaptive Support Ventilation

Treatments

Other: Adaptive support ventilation
Other: Volume controlled ventilation

Study type

Interventional

Funder types

Other

Identifiers

NCT02877498
NK/2194/Study/1241(168)

Details and patient eligibility

About

Neuroparalytic snake envenomation results in severe muscle weakness and respiratory failure. Treatment requires administration of anti-snake venom and supportive care in the form of invasive mechanical ventilation. Whether using adaptive support ventilation (a closed loop mode of ventilation) in comparison to volume controlled ventilation will shorten the duration of ventilation remains undetermined. The current study is planned to compare adaptive support ventilation (ASV) mode of ventilation versus volume controlled ventilation (VCV) during invasive mechanical ventilation for the management of respiratory failure secondary to neuroparalytic snake envenomation.

Full description

Snake envenoming is a common medical emergency encountered in the tropical countries, and an estimated 35,000 -50,000 people die of snakebite every year in India. The bites of elapid snakes cause predominantly neurotoxicity, which manifests as ocular and bulbar paralysis, and paralysis of the muscles of respiration, with resultant respiratory failure. The management of these patients includes ventilatory support and administration of snake anti-venom. Respiratory failure requiring mechanical ventilatory support is a frequent cause of admission to the intensive care unit (ICU). Mechanical ventilation is a life-saving intervention, and once there is improvement of the underlying indication, it can be withdrawn abruptly in the majority. However, approximately 20-30% of patients still require gradual discontinuation (ie, weaning). This process is not only difficult in patients with chronic respiratory diseases and acute neuromuscular disorders, such as neurotoxic snake bite, but is also associated with important complications, such as nosocomial pneumonia, prolonged ICU stay, and even mortality, especially in those with persistent weaning failure.

Adaptive support ventilation (ASV) is a closed-loop ventilation mode designed to provide a user-set minimum minute ventilation in intubated patients, either actively breathing or passively ventilated. ASV automatically selects a target ventilatory pattern based on user inputs [patient's predicted body weight (PBW), minimum minute volume, and pressure limit] and respiratory mechanics data from the ventilator monitoring system (respiratory system expiratory time constant and dynamic compliance). The algorithm selects ventilatory parameters so as to minimize total work of inspiration, and the ventilator continuously adapts to match changes in respiratory mechanics by using automatic controls for level of inspiratory pressure above positive end-expiratory pressure (PEEP), frequency, and inspiratory time of ventilator-initiated breaths.

In most studies, ASV has been used only in the weaning phase, and patients were ventilated with conventional modes until weaning. However recent studies suggest its role in primary ventilation in the initial phase of respiratory failure. Previous use of ASV in patients with acute respiratory distress syndrome has been described from our center and the use of ASV was equally efficacious to conventional mode of ventilation (volume control). In another study the use of ASV in comparison to pressure control ventilation in patients with acute respiratory failure reduced the weaning duration and total duration of mechanical ventilation. Because ASV can be used from intubation to extubation, it may also offer some advantages before the weaning phase in patients with respiratory failure. Therefore, we hypothesize that ASV may shorten the total mechanical ventilation (MV) duration, weaning duration, and increase the weaning success rates when compared with conventional ventilation in the management of patients with neuroparalytic snake envenomation.

Enrollment

50 estimated patients

Sex

All

Ages

12 to 90 years old

Volunteers

No Healthy Volunteers

Inclusion criteria

  1. Need for invasive mechanical ventilation for management of respiratory failure
  2. age group of 12 to 90 years
  3. ability to provide informed consent to participate in the study

Exclusion criteria

  1. Cardiorespiratory arrest requiring cardiopulmonary resuscitation
  2. pregnancy
  3. failure to provide informed consent

Trial design

Primary purpose

Treatment

Allocation

Randomized

Interventional model

Parallel Assignment

Masking

Triple Blind

50 participants in 2 patient groups

Adaptive support ventilation
Experimental group
Description:
adaptive support ventilation mode during invasive mechanical ventilation
Treatment:
Other: Adaptive support ventilation
Volume controlled ventilation
Active Comparator group
Description:
Volume controlled ventilation during invasive mechanical ventilation
Treatment:
Other: Volume controlled ventilation

Trial contacts and locations

1

Loading...

Data sourced from clinicaltrials.gov

Clinical trials

Find clinical trialsTrials by location
© Copyright 2024 Veeva Systems