Status
Conditions
Treatments
About
Atrial and ventricular cardiac arrhythmias are serious public health problems in the United States, affecting over 5% of Americans and are major causes of stroke and heart failure leading to increased morbidity and mortality. This proposed clinical trial will determine how electromechanical wave imaging (EWI), a non-invasive ultrasound precision imaging modality, can effectively diagnose and determine the mechanism of the arrhythmia and impact personalized treatment of cardiac arrhythmias. Participants who are already scheduled for electrophysiology study will receive EWI prior to their study. Half of participants will randomly have their EWI imaging data available for their electrophysiologist to analyze and potentially affect procedure planning and execution. Across all participants the results of EWI and the electrophysiology study will be compared to determine EWI accuracy at diagnosing arrhythmias. Participants whose electrophysiologists had access to EWI data will be compared against those without access to determine if EWI data led to improved procedure efficiency and outcomes.
Full description
Cardiac arrhythmias are a major cause of morbidity and mortality affecting over 5% of Americans. Arrhythmias have become increasingly prevalent due to an aging population with diabetes, heart failure and hypertension, which has led to an increasing number of invasive electrophysiology studies and catheter ablations. Understanding of the cardiac arrhythmia mechanism, if it is focal or reentrant, and the specific location of the arrhythmia origin is limited by the current first-line, standard of care, noninvasive diagnostic test - the 12-lead electrocardiogram (ECG), which is dependent on physician subjective interpretation. Furthermore, it does not present the arrhythmia in an easily visualized, three-dimensional, anatomical manner for patients or physicians to understand. Other noninvasive mapping techniques such as ECG imaging (ECGI) or virtual-heart technology, requires additional preprocedural imaging such as computed tomography which exposes patient to radiation, or magnetic resonance imaging which is costly. Over ten years, the collaborative team effort between Cardiac Electrophysiology and Biomedical Engineering at Columbia University Irving Medical Center, has developed Electromechanical Wave Imaging (EWI), an ultrasound-based technique that takes 10-15 minutes to non-invasively image arrhythmias by visualizing the electromechanical wave corresponding to electromechanical coupling. A new technique, a full 3D EWI noninvasive ultrasound technique, has been developed which can construct an entire 4 chamber cardiac activation map using a single heartbeat of arrhythmia acquired in one apical transthoracic echocardiographic image. This study involves three aims which will validate non-invasive 3D EWI to high density activation maps (HDAM) acquired during invasive electrophysiology study and demonstrate its clinical impact to shorten procedural times and improve clinical outcomes in a randomized clinical trial. The investigators will study patients with manifest pre-excitation such as Wolff-Parkinson-White syndrome, atrial tachycardia, atrial flutter, premature atrial complexes, premature ventricular complexes and ventricular tachycardia. This study aims to demonstrate that 3D EWI is an invaluable tool for pre-ablation planning to (1) provide target localization, (2) diagnose the mechanism of the arrhythmia, as focal or macro-reentrant arrhythmia, useful in decision-making for systemic anticoagulation and (3) improve ablation outcomes in terms of mapping/procedure times and number of ablation lesions.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
322 participants in 2 patient groups
Loading...
Central trial contact
Elaine Y Wan, MD
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal