Status
Conditions
About
Occult pleural dissemination (PD) in non-small cell lung cancer (NSCLC) patients is likely to be missed on computed tomography (CT) scans, associated with poor survival, and generally contraindicated for radical surgery. This study aimed to develop and compare the performance of radiomics-based machine learning (ML), deep learning (DL), and fusion models to preoperatively identify occult PDs in NSCLC patients. Patients from three Chinese high-volume medical centers (2016-2023) were retrospectively collected and divided into training, internal test, and external test cohorts. Ten radiomics-based ML models and eight DL models were trained using CT plain scan images at the maximum cross-sectional areas of the primary tumor. Moreover, another two fusion models (prefusion and postfusion) were developed using feature-based and decision-based methods. The receiver operating characteristic curve (ROC) and area under the curve (AUC) were mainly used to compare the predictive performance of the models.
Enrollment
Sex
Volunteers
Inclusion criteria
Exclusion criteria
326 participants in 1 patient group
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal