Status and phase
Conditions
Treatments
About
The purpose of this study is to determine if alcohol is able the affect the body's ability to eliminate two commonly used medication, oseltamivir and aspirin. We hypothesize that drinking alcohol may reduce the body's ability to break down these two medications along with many others.This could affect the amount of drug in the blood which could impact how well these drugs work and whether patients have side effects.
Full description
Carboxylesterases are enzymes that metabolize a growing number of commonly used medications. In humans, two carboxylesterases, carboxylesterase-1 (hCE1) and carboxylesterase-2 (hCE2), found primarily in the liver and intestine respectively, play an important role in the biotransformation of numerous classes of commonly used drugs containing ester groups including ACE inhibitors, anticancer agents, opiate analgesics, HMG-CoA reductase inhibitors (statins), CNS stimulants, antiviral medications, and antiplatelet agents.
Factors affecting the activity of carboxylesterases would be expected to markedly alter the pharmacokinetics and clinical effects of substrate drugs. One key factor that could affect catalytic activity is drug interactions that inhibit carboxylesterase function. The importance of inhibition of drug metabolism in medication safety and efficacy is well established for drugs that undergo metabolism by cytochrome P450 enzymes. In distinct contrast, little is known about the potential for carboxylesterases to serve as a target for metabolic inhibition mediated by drug interactions.
It is well established that ethanol is an inhibitor of cocaine metabolism, a drug that is eliminated by carboxylesterase hydrolysis. We propose that the ethanol-mediated inhibition of carboxylesterases activity demonstrated with cocaine metabolism will occur with other substrate drugs. This has widespread implications because of the large number of drugs that are carboxylesterase substrates. In the United States, over 100 million people consume ethanol making co-ingestion with carboxylesterase substrate drugs a common occurrence. We believe that this is a prevalent drug interaction that is largely overlooked and has not been systematically evaluated, but may importantly affect the disposition, safety, and efficacy of these medications. To address this gap, we will evaluate the effect of ethanol on the disposition of oseltamivir, an hCE1 substrate, and aspirin, an hCE2 substrate, in humans.
Normal healthy volunteers will report to the University of Tennessee Health Science Center Clinical Research Center (CRC) for a 10 hour stay on four separate days and receive each of the following treatments in random order:
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
19 participants in 4 patient groups
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal