Status
Conditions
Treatments
About
Interpretation of breast MR images is a very time-consuming process and places a great burden on breast radiologists. This project aims to develop a technical solution that addresses this healthcare challenge by developing a system that is able to automatically interpret breast MR images in order to aid the radiologist in their diagnosis.
Full description
Breast cancer is the most common type of cancer in women worldwide, with nearly 1.7 million new cases diagnosed in 2015. In the UK, one in five cases of breast cancer results in a fatality. The IntelliScan project aims to develop a technological solution that addresses a significant healthcare challenge. IntelliScan will develop a software system that will be able to interpret breast MR images automatically in order to identify potential breast cancers.
Regular MRI screening of the breast is offered to women from the age of 20, who are at higher risk of developing breast cancer. MR image sequences provide a large amount of information to the radiologist and the interpretation of images is a manual process, which is very time consuming. The high number of women eligible for MRI screening combined with the amount of data provided by MRI scans places a great burden on healthcare systems. Therefore, automatisation of this process would greatly relieve this burden and also has the potential to provide more accurate diagnoses.
In this first study, the system's user interface as well as the algorithm will be developed using existing MRI scans. Existing MRI scans with known breast anomalies will be used to develop the decision-making basis for the algorithm. The system will then be tested using existing MRI scans without information about possible anomalies and results will be compared to results from the software system currently in use. In addition, the user-friendliness of the system's user interface will also be evaluated.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
Loading...
Central trial contact
Jamil Kanfoud, M.Eng.; Susann Wolfram, PhD
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal