Status
Conditions
About
With increasing life expectancy, the elderly population is growing. Hip fractures significantly increase morbidity and mortality, particularly within the first year, among elderly patients. Managing anesthesia in these elderly patients, who often have multiple comorbidities, is challenging. Identifying perioperative factors that can reduce mortality will benefit the perioperative management of these patients.
The aim of this study is to develop and validate a machine learning based model to predict the length of hospital stay for hip fracture patients after PACU. Different machine learning algorithms such as R language Gradient Boosting, Random Forest, Artificial Neural Networks and Logistic Regression will be used in the study and the best performing model will be determined. In addition, the prediction mechanism of the model will be examined with SHAP analysis and its applicability in clinical decision processes will be evaluated. Thus, by predicting the length of hospital stay, clinicians will be enabled to manage patient care processes more effectively.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
366 participants in 2 patient groups
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal