Status
Conditions
Treatments
Study type
Funder types
Identifiers
About
The objective of this research is to improve the care of ocular disease and disorders, in particular the changes in the eye associated with diabetes, by providing clinicians with dramatically improved ultrasonic images of the entire eye. The research combines advanced high-frequency, high-resolution ultrasonic annular arrays transducers with new processing techniques designed to overcome several limits that have been reached with conventional high frequency ultrasound systems. The investigators propose that diagnosis of eye diseases using annular arrays can be more effective than the conventional ultrasound images by at least 50%; i.e., that for every 2 posterior vitreous detachments detected conventionally, 3 will be detected with the annular arrays.
Full description
The goal of this study is to develop and evaluate advanced annular-array transducer technology for rapid, high-definition imaging. The study will assess high frequency ultrasound (HFU, 40 & 20 MegaHertz) annular arrays in imaging posterior vitreous detachments (PVDs) associated with diabetic retinopathy, the leading cause of blindness in the US working-age population according to Prevent Blindness America. Current HFU instruments do not use linear arrays for such applications because of a variety of technical and cost reasons. Instead, current HFU instruments use mechanically scanned, single-element transducers, which provide fine-resolution images over a very limited depth of field (DOF). For ophthalmic applications, a shallow DOF causes most ocular anatomy to be imaged with poor definition compared to the in-focus region; therefore, because only a small portion of the eye is in focus at a given time, detection and assessment of ocular conditions such as PVD are prone to inaccuracies and false-negative determinations. Annular-array transducers offer a promising approach to significantly extend DOF and to increase the depth range over which fine-lateral resolution is provided. The investigators will validate system performance using animal experiments and human-subject examinations. First, in vivo animal experiments will be conducted to evaluate a 40-MegaHertz (MHz) annular array for anterior-segment imaging and a 20-MHz annular array for posterior segment and full-globe imaging. The investigators will test the hypothesis that 20-MHz annular arrays improve detection of PVD. Validation of this hypothesis will significantly improve our ability to assess disease status in diabetic retinopathy.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
30 participants in 1 patient group
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal