Status and phase
Conditions
Treatments
Study type
Funder types
Identifiers
About
Cystic fibrosis patients suffer from a chronic destruction of the lung, frequent and finally chronic pneumonia and a reduced life expectancy. Unfortunately, no curative treatment for cystic fibrosis is available, neither are treatments established that prevent the disease. Our data identify ceramide as a potential novel target to treat cystic fibrosis.
Two smaller trials support the notion that inhibition of the acid sphingomyelinase by amitriptyline improves the lung function of CF-patients even at a dose that is low enough to avoid adverse effects.
In the present proposal the investigators, therefore, aim to test in a larger cystic fibrosis patient population whether an inhibition of ceramide release in the lung caused by the lack of functional CFTR improves the lung function of cystic fibrosis patients. Inhibition of ceramide-release in the lung will be achieved by treatment with amitriptyline, which is used as an anti-depressant drug for almost 50 years. Although it is not absolutely specific, it seems to be relatively specific for the degradation of acid sphingomyelinase (typically 60-80% of cellular acid sphingomyelinase are degraded), which releases ceramide from sphingomyelin.
If the data confirm the beneficial effect of amitriptyline already observed in our preliminary studies, the present clinical study may establish a novel treatment to improve clinical symptoms of cystic fibrosis and, moreover, to prevent or at least delay the onset of cystic fibrosis.
Hypothesis
Based on these effects amitriptyline increases the lung function of cystic fibrosis patients (measured by FEV1).
Full description
Cystic fibrosis (CF), the most common autosomal recessive disorder at least in western countries, is caused by mutations of the cystic fibrosis transmembranous conductance regulator molecule (CFTR) and affects approximately 40 000 patients in Europe. Most, if not all, CF-patients develop a chronic pulmonary infection with Pseudomonas aeruginosa (P. aeruginosa). At present, it is unknown why CF-patients are highly sensitive to P. aeruginosa infections and, most importantly, no curative treatment for cystic fibrosis is available.
Our studies provided a novel pathophysiological concept for cystic fibrosis. The investigators demonstrated that ceramide plays a crucial role in the development of cystic fibrosis and the high sensitivity of Cftr-deficient mice to infection with P. aeruginosa (1,2). Using biochemical techniques, fluorescence microscopy, and mass spectrometry, the investigators found that ceramide accumulates in the lungs of various Cftr-deficient mouse strains before any infection occurs, in particular in the epithelial cells of large and small bronchi and in alveolar macrophages. The accumulation of ceramide in Cftr-deficient epithelial cells may be mediated by an increase in pH from 4.5 to 6.0 in secretory lysosomes and pre-lysosomes of Cftr-deficient cells. The change in pH results in a reduction of approximately 90% in the activity of acid ceramidase which consumes ceramide, and a reduction of only 35% in the activity of acid sphingomyelinase which releases ceramide. An imbalance in the activity of these two enzymes, by which a relative over-activity of acid sphingomyelinase produces ceramide, may then result in an accumulation of ceramide. Partial inhibition of acid sphingomyelinase, either genetically or pharmacologically, returns ceramide concentrations to near normal levels in the lungs of Cftr-deficient mice. Genetic inhibition of acid sphingomyelinase was achieved by crossing Cftr-deficient mice with acid sphingomyelinase-deficient mice to create mice deficient in Cftr and heterozygous for acid sphingomyelinase (Cftr-/-/Smpd1+/- mice). The activity of acid sphingomyelinase in the lungs of these mice was approximately 50% lower than in the lungs of wild-type mice. Pharmacological inhibition of acid sphingomyelinase was achieved by treating Cftr-deficient mice with the functional acid sphingomyelinase inhibitor amitriptyline (1,2). Increased concentrations of ceramide in the bronchial epithelial cells of Cftr-deficient mice triggered death of these cells, the deposition of DNA in bronchi, chronic pulmonary inflammation, and a high susceptibility of Cftr-deficient mice to pulmonary infections with P. aeruginosa. Normalisation of ceramide concentrations by genetic means normalised these changes, and pharmacological inhibition of acid sphingomyelinase prevented these changes. Ceramide accumulation was also observed in ciliated nasal epithelial cells, macrophages and lung transplant materials from CF patients (1-4). This finding suggests that the results of our murine studies also apply to humans with cystic fibrosis. Next, the investigators applied a panel of functional inhibitors of acid sphingomyelinase and treated Cftr-deficient mice by inhalation of amitriptyline, trimipramine, desipramine, chlorprothixene, fluoxetine, amlodipine, or sertraline, all of which are functional inhibitors of acid sphingomyelinase. This inhalation reduced the activity of acid sphingomyelinase specifically in the lung and normalised pulmonary ceramide concentrations, inflammation, and susceptibility to infection (2). Recent findings by C. Ward and associates confirmed the accumulation of ceramide in lung specimens from CF patients (5).
Clinical data:
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
30 participants in 2 patient groups, including a placebo group
Loading...
Central trial contact
Joachim Riethmueller, Dr.
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal