Status
Conditions
Treatments
About
The primary question to be addressed by this study is: compared with a functional oxygen saturation level (SpO2) of 91-95%, does targeting SpO2 85-89% in extremely preterm infants from birth or soon after, result in a difference in mortality or major disability in survivors by 2 years corrected age (defined as gestational age plus chronological age)?
Full description
Oxygen has been used in the care of small and sick newborn babies for over 60 years. However, to date there has been no reliable evidence to guide clinicians regarding what is the best level to target oxygen saturation in preterm infants to balance the four competing risks of mortality, lung disease, eye damage and developmental disability.
Five high quality randomised controlled trials are now underway assessing two different levels of oxygen saturation targeting (USA - SUPPORT; Australia - BOOST II; New Zealand - BOOST NZ; UK - BOOST II UK; Canada - COT). The value of these gold-standard trials can be further enhanced when, with careful planning, they are synthesised into a prospective meta-analysis (PMA). A PMA is one where trials are identified for inclusion in the analysis before any of the individual results are known.
We have established the Neonatal Oxygenation Prospective Meta-analysis (NeOProM) Collaboration, comprising the investigators of these five trials and a methodology team. The trials are sufficiently similar with respect to design, participants and intervention and, with planning, will have enough common outcome measures to enable their results to be prospectively meta-analysed. Together they have a combined sample size of almost 5000 enrolled infants.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
4,965 participants in 2 patient groups
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal