Status
Conditions
Treatments
Study type
Funder types
Identifiers
About
Low-frequency brain rhythms in the alpha (8-14Hz) and beta (15-29Hz) bands are strong predictors of perception and functional performance in a range of tasks, and are disrupted in several disease states. The purpose of this study is to investigate a direct causal relationship between low-frequency brain rhythms and sensory perception, and to optimize commonly used TMS paradigms to impact sensory processing and perception in a similar manner as endogenous rhythms. To do so, this study combines human magnetic resonance imaging (MRI), electroencephalography (EEG), non-invasive brain stimulation (transcranial magnetic stimulation; TMS), and biophysically principled computational neural modeling.
Full description
Prior studies have shown that high power low-frequency brain rhythms in the alpha (8-14) and beta (15-29 Hz) bands in primary somatosensory cortex (SI) are associated with a decreased probability of perceiving tactile stimuli at perceptual threshold, and can be modulated with attention. Furthermore, high power beta activity in SI emerges as brief "events" (<150ms) in un-averaged data, the rate and timing of which underlie the attentional and perceptual effects associated with high beta power.
In this study, human electroencephalography (EEG) and a non-painful tactile detection task are used to assess if and how the rate and timing of ongoing rhythmic events in the alpha/beta bands prior to a tactile stimulus causally impact touch perception, and how this relates to attention. A custom TMS protocol that is hypothesized to mimic endogenous beta-frequency event patterns is used to test whether TMS can impact perception in a similar manner. Finally, computational neural modeling designed to simulate macro-scale EEG signals is used to aid in the interpretation of potential neural circuit mechanisms underlying features of acquired EEG data.
The TMS-EEG components of this study will use a within-subjects crossover design. In initial study sessions, participants will have an MRI. In subsequent study sessions, participants will complete a tactile detection task while EEG data is recorded concurrent with online active or sham TMS. Analyses will focus on comparing detection probabilities of tactile stimuli presented at perceptual threshold and tactile evoked response potential waveforms between trials in which TMS pulses or endogenous beta events occur with similar timing and intensity.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Contraindicated medications:
alcohol Amitriptyline Amphetamines ampicillin Anticholinergics Antihistamines aripiprazole BCNU **bupropion** cephalosporins chlorambucil chloroquine Chlorpromazine citalopram Clozapine Cocaine cyclosporine cytosine arabinoside Doxepine duloxetine fluoxetine fluphenazine fluvoxamine Foscarnet gamma-hydroxybutyrate (GHB) Ganciclovir haloperidol imipenem Imipramine isoniazid ketamine levofloxacin Lithium Maprotiline MDMA (ecstasy) mefloquine methotrexate metronidazole mianserin mirtazapine Nortriptyline olanzapine paroxetine penicillin phencyclidine (PCP, angel's dust) pimozide quetiapine reboxetine risperidone Ritonavir **Sertraline** Sympathomimetic theophylline venlafaxine vincristine ziprasidone
Primary purpose
Allocation
Interventional model
Masking
45 participants in 2 patient groups
Loading...
Central trial contact
Danielle D Sliva, MA; Simona Temereanca Ibanescu, PhD
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal