Status
Conditions
Treatments
About
Inherited movement disorders are rare conditions, whose cumulative prevalence are in the order of 5-10/100,000 inhabitants, in most cases progressive and can lead to a significant loss of autonomy after one or more decades of evolution. They include spinocerebellar ataxias and hyperkinetic disorders (dystonias, choreas, tremor, parkinsonism and myoclonus with variable combination of those, or more complex alteration of movements). The existence of the National Reference Centre (CMR) for Rare Diseases (CMR Neurogenetics, devoted to ataxias and spastic paraparesis, dystonia and rare movement disorders and CMR Huntington, devoted to Huntington Disease) has allowed a more integrated vision of these diseases. This is illustrated, in the same family, by the occurrence of different clinical expressions of spinocerebellar ataxias and hyperkinetic disorders that share the same genetic background. Conversely, different causal mutations within the same gene may have very different ages at onset and a wide range of clinical expression, and the spectrum of new phenotypes linked to a single gene is still expanding . Many ataxia and dystonia genes are involved in similar pathways. There are numerous arguments supporting a share pathogenesis including synaptic transmission and neurodevelopment .
BIOMOV project aims to :
Full description
Inherited movement disorders are rare conditions, whose cumulative prevalence are in the order of 5-10/100,000 inhabitants, in most cases progressive and can lead to a significant loss of autonomy after one or more decades of evolution. They include spinocerebellar ataxias and hyperkinetic disorders (dystonias, choreas, tremor, parkinsonism and myoclonus with variable combination of those, or more complex alteration of movements). The existence of the National Reference Centre (CMR) for Rare Diseases (CMR Neurogenetics, devoted to ataxias and spastic paraparesis, dystonia and rare movement disorders and CMR Huntington, devoted to Huntington Disease) has allowed a more integrated vision of these diseases. This is illustrated, in the same family, by the occurrence of different clinical expressions of spinocerebellar ataxias and hyperkinetic disorders that share the same genetic background. Conversely, different causal mutations within the same gene may have very different ages at onset and a wide range of clinical expression, and the spectrum of new phenotypes linked to a single gene is still expanding .
any ataxia and dystonia genes are involved in similar pathways. There are numerous arguments supporting a share pathogenesis including synaptic transmission and neurodevelopment .
Overall, there are a number of arguments for a shared genetic approach and biomarkers research for these inherited movement disorders:
These elements demonstrate the need to develop quantitative tools that are easy to use, reproducible and sensitive to disease progression in order to accurately determine the natural history of the disease. This lack of systematic knowledge impedes diagnosis, patient counselling and therapy development.
Overall: Identification of the underlying gene and its pathogenic changes or variant(s) contributes to precise diagnosis, genetic counselling and follow-up. Advances in molecular genetics have highlighted the genotypic complexity, justifying the need for rigorous clinical and para-clinical evaluation to establish relevant phenotype-genotype correlations. In dystonia and in spinocerebellar degenerations attempts have been made to classify the genes involved.
Molecular genetic analysis will make it possible to specify the correlations between phenotype and genotype in order to propose rational molecular diagnostic strategies based on the frequency and nature of mutations, taking into account the phenotype. Genetic analyses will have an impact in terms of public health since they will serve as a basis for guiding requests for molecular analyses in these pathologies. In addition, recent advances in therapeutic trials will need the careful selection of participants, mostly based on biomarkers, for successful testing of new therapeutical agents. Therefore, it seems essential that this cohort of patients be supplemented by a collection of biological material for genetic research.
BIOMOV project aims to : 1) establish the clinical spectrum and natural history of these diseases, 2) understand the role of genetic and familial factors on the phenotype, 3) elucidate the molecular basis of these disorders and evaluate diagnostic strategies involving molecular tools for clinical and genetic management, 4) develop multimodal biomarkers both for physiopathological studies and for accurate measures of disease progression, 5) develop trial ready cohorts of well characterized genetic patients, 6) test new therapies either symptomatic or based on pathophysiological mechanisms.
It is crucial to be able to establish a large cohort of patients whose genotype will be specified. Follow-up of patients at different stages of the disease will make it possible to collect the natural history of the disease in a descriptive manner, with prospects for patient management, since the prognosis in terms of loss of autonomy or disability will be better specified. However, the main interest of the proposed clinical follow-up is to be able to quantitatively describe the progression of the main neurological diseases. These data are absolutely essential for the future implementation of therapeutic trials. The number of patients likely to be recruited and followed up a unique resource for such a project
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Common inclusion criteria for all participants:
Group of patients:
Any patient with inherited hyperkinetic movement disorders can be included in the study according to the following criteria:
Woman or man;
Group of at-risk individuals:
Group of healthy controls:
Common inclusion criteria for elective participant for skin biopsy (optional): - Age ≥10 ans
Common inclusion criteria for elective participant for MRI examination (optional): - Ability to undergo a MRI.
Exclusion criteria
Absolute criteria for non-inclusion for all groups:
Contra-indications to MRI examination* (optional): metallic implant, pacemaker, artificial heart valve, brain vascular malformation, aneurysm clips, exposed by metallic fragments, artificial implants, peripheral or neuronal stimulator, insulin pump, intravenous catheter, epilepsy, metallic contraceptive device, claustrophobia,
Contra-indication to skin biopsy (optional):
Loading...
Central trial contact
Alexandra DURR, PUPH; Mariana ATENCIO-SEGURA
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal