Status
Conditions
Treatments
About
Carbon monoxide (CO) has been called a "silent killer", and those patients who survive CO poisoning are at risk of neurological damage, which may be permanent. CO is a leading cause of unintentional poisoning deaths in the United States, and the odorless gas results in an estimated average of 20,636 emergency department (ED) visits each year. Oxygen is the antidote for CO poisoning, and it acts both by attenuating toxic effects and enhancing elimination. A fractional inspired concentration of oxygen (FiO2) of 0.7 to 0.9 may be achieved by administration of 100% oxygen delivered using a reservoir with a facemask that prevents rebreathing. Hyperbaric oxygen therapy may provide added benefit for patients with CO poisoning, but this therapy is unavailable in many parts of the United States including Vermont. Use of a continuous positive airway pressure (CPAP) mask may achieve an FiO2 of 1.0, but the effects of delivering an FiO2 of 1.0 compared to 0.7 in CO poisoning are unknown. CPAP, by comparison, is inexpensive, portable, and available in most EDs. In this study, the investigators are testing the hypothesis that oxygen delivered by CPAP will improve both CO washout kinetics and functional outcomes, compared to the standard therapy of oxygen delivered by non-rebreathing facemask. Specific Aim 1 will provide toxicokinetic data to support a potential benefit in the use of CPAP for CO poisoning, by comparing CO elimination kinetics in response to oxygen therapy delivered by non-rebreathing facemask versus CPAP. The 20 patients expected in our first year will provide adequate power to detect a 20% fall in half-time of CO elimination. While CPAP may increase CO washout rates, as predicted in Specific Aim 1, demonstration of real functional benefit will be tested in Specific Aim 2. This Aim seeks to determine functional (neuropsychological) outcomes in patients with CO poisoning treated with oxygen therapy delivered by non-rebreathing facemask versus CPAP. Data showing a therapeutic benefit from CPAP in CO poisoning would have clinical implications. Compared to hyperbaric oxygen therapy, CPAP therapy can begin earlier, including the pre-hospital setting, for patients with known exposure. With the frequent nature of CO poisoning and the widespread availability of CPAP, a potential benefit could lead to improved outcomes for the 20,000+ patients who present to EDs annually.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
40 participants in 2 patient groups
Loading...
Central trial contact
Tyler J Lemay, BFA; Kalev Freeman, MD PhD
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal