Status
Conditions
Treatments
About
This study will define the relationship of cardiac, vascular function and skeletal muscle blood flow (individually and together) to cardiovascular exercise capacity in in men and women with and without type 2 diabetes (T2DM). Identification of differences in the effects of exercise training on the integrated cardiovascular system and metabolism in men and women with and without T2DM will reveal specific adaptive responses to exercise.This study will evaluate & compare exercise function in a total of 60 subjects from the Denver area (30 people with T2DM and 30 overweight control subjects).
Specific Aim 1: To test the hypothesis that the integration of cardiac function, macrovascular function, and microvascular function is impaired in T2D and correlates with cardiovascular exercise capacity (CVEC) impairment.
Specific Aim 2: To test the hypothesis that exercise training will elicit adaptive responses in cardiac and vascular function, muscle perfusion and metabolism with differences by T2D status.
Differences between the exercise responses in people with T2DM and healthy people will help further identify the disease process of T2DM and direct future research of treatments and interventions.
Full description
It is well established that functional exercise capacity and peak oxygen uptake (VO2) are reduced in patients with type 2 diabetes mellitus (T2DM) compared with healthy counterparts. The mechanisms underlying the exercise deficit in T2DM remain largely unknown, but previous work has suggested that reduced exercise blood flow and impaired submaximal VO2 may be contributing factors. Both of these findings are consistent with a peripheral impairment of skeletal muscle oxygen delivery, oxygen utilization, or both. Indeed, dysfunction of skeletal muscle metabolism plays a key role in the pathophysiology of T2DM, and considerable work has described abnormalities of oxidative function in the skeletal muscle of people with T2DM. Given this, it is likely that the causes of exercise intolerance in T2DM may relate to specific defects at the level of the skeletal muscle, particularly given that skeletal muscle blood flow and oxidative capacity are impaired in diabetes. However, to the knowledge of the investigators, no one has related these peripheral muscle abnormalities to the diminished exercise function in this patient group.
The overarching hypothesis for the proposed research is that impaired CVEC in T2DM is the result of preclinical cardiac, vascular dysfunction and skeletal muscle perfusion abnormalities. Exercise training will improve CVEC and will reveal specific reversible therapeutic aspects of this pathology. The investigators will first determine the impairments and then evaluate responses to an established cardiac rehabilitation exercise training program, established to improve fitness in people with and without diabetes. Given the greater CVEC abnormalities observed in women, sex differences will be evaluated for each aim.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
124 participants in 2 patient groups
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal