Status and phase
Conditions
Treatments
About
MAC lung infections are a growing public health problem. The ATS / IDSA 2007 guidelines for the treatment of these non-tuberculous mycobacterial infections recommend the use of a macrolide or azalide (clarithromycin or azithromycin), rifampicin or rifabutin and ethambutol.
For MAC disseminated infections, several studies have compared combinations containing clarithromycin or azithromycin and found no significant difference in efficacy. No randomized controlled trials have been performed for pulmonary infections to compare clarithromycin and azithromycin in terms of efficacy. Clarithromycin is often used as a first-line treatment in France, but its tolerance is often poor, particularly in terms of risk of hepatitis, metallic taste in the mouth, nausea or vomiting, and it interacts with many drugs via cytochrome p450 . In particular, it increases the toxicity of rifabutin, in particular in terms of uveitis. Azithromycin has fewer side effects especially less digestive toxicity and drug interactions than clarithromycin.
The hypothesis is therefore that the efficacy of azithromycin would be non-inferior in comparison with that of clarithromycin.
Full description
Scientific rationale and general description:
Nontuberculous mycobacteria (NTM) represent all mycobacteria not belonging to the Mycobacterium tuberculosis complex. This group of mycobacteria was discovered recently and has demonstrated pulmonary pathogenicity. The presence of a NTM in a respiratory specimen is therefore not sufficient to confirm the diagnosis of a lung infection. The ATS/IDSA 2007 guidelines require clinical, radiological and microbiological criteria to distinguish infection from colonisation.
The main NTM isolated and responsible of NTM pulmonary infections in France is Mycobacterium avium complex (MAC). MAC organisms are common in many environmental sites, including water, soil and in animals. Up to now, the main hypothesis for transmission is inhalation of MAC via aerosol during the shower. Three classical clinical and radiological patterns are described for MAC: the fibrocavitary lung disease, the nodular bronchiectatic disease and the hypersensitivity disease. This last pattern classically doesn't need any antibiotics. So, this study will focus only on the two first patterns: fibrocavitary form and nodular-bronchiectatic form.
The limitations for effective therapy were the absence of antimicrobial agents with low toxicity and good in vivo activity against the organism. The major therapeutic advance is the introduction of the newer macrolides, clarithromycin and azithromycin, which have substantial efficacy in vitro and clinical activity against MAC. Structurally, azithromycin is an azalide. However, because of the close similarity of azalides to macrolides, the term "macrolide" is often used to refer to azithromycin and clarithromycin. As macrolides are the cornerstone of MAC treatment, their use in monotherapy is responsible of selection of macrolides MAC resistant strains that are associated with microbiological and clinical relapse. This is why all international guidelines and all experts recommended the use of macrolides with at least two companion drugs, classically rifampicin and ethambutol.
Treatment of MAC lung disease is long and not well tolerated. Despite treatment, microbiological failure or early relapse occurs in 20-30% of patients. One of the main failure explanations in NTM disease is the spontaneous treatment stop by the patient, due to adverse effects. Even if clarithromycin is often used in first line in France and is the only one macrolide with indication in its Summary of Product Characteristics, its tolerance is often poor. Adult patients generally cannot tolerate clarithromycin at more than 1,000 mg/day. The most common toxicities seen with clarithomycin are gastro-intestinal (metallic taste, nausea, and vomiting) and it interacts with numerous drugs via P450 cytochrome. Moreover, clarithromycin enhances rifabutin toxicity, especially uveitis. Azithromycin toxicity is dose and serum-level related. Most adult patients with MAC lung disease do not tolerate azithromycin doses of greater than 300 mg/day because of frequent adverse events, including gastrointestinal symptoms (primarily diarrhea).
The main hypothesis is the non-inferiority of azithromycin containing regimen efficacy in comparison to clarithromycin. Moreover differences in intracellular concentration of azithromycin and clarithromycin may result in differences in efficacy and safety. The investigators also suggest that intracellular concentration of azithromycin or clarithromycin may be correlated with microbiological success at 6 months of treatment. If this study could demonstrate that azithromycin is not inferior to clarithromycin in term of efficacy, azithromycin could be used in first line to improve patient tolerance and adherence to the treatment.
Study design and randomization method:
The CLAZI study is a multicentre, controlled open-label clinical trial studying two treatment regimens containing two molecules, rifampin and ethambutol, in combination with a third randomized molecule, either clarithromycin or azithromycin.
41 centres located in France will participate.
After having confirmed the presence of all inclusion criteria and the absence of all exclusion criteria, and after having obtained the patient's free and informed consent, the patient will be included and randomized to one of the treatment regimens. An interactive web response system will be used to randomize patients using a minimization algorithm stratified on centre, radiological form (nodular bronchiectatic form and fibrocavitary form).
After inclusion, the patients will receive the treatment as follow:
Treatments will not be provided because they are prescribed in their indication. They will be issued in the dispensary. The compliance of treatment will be evaluated for each period by the investigator, from the book of compliance, given to the patient at the beginning of treatment and bring each consultation.
Monitoring will be performed throughout treatment, comprising:
A nested pharmacokinetic study will be done on 100 patients with peak serum and mononuclear cells concentration of azithromycin and clarithromycin and their main metabolites (D azithromycin and 14OH clarithromycin respectively). Indeed, a correlation could exist between intracellular concentration and microbiological success. These dosages will be done at 1 and 6 months.
Dosages in hair samples will be done at M6, as it is the best reflect of macrolides use. Indeed, most drugs present in the bloodstream also reach and stay in the forming hair where their concentrations can be measured and interpreted as an overall chronic exposure.
For all patients, a baseline assessment will be performed on inclusion and the same criteria will then be assessed at 3, 6 and 12 months in order to determine the clinical and radiological outcome.
Long-term follow-up of the included patients will be proposed, with recording of any new adverse effects emerging at the end of treatment (between 12 and 18 months), any relapses, and survival at 18, 24, 36 months and, whenever possible, 5 years.
If a patient who initially clears sputum, but then turns positive again while still on therapy could be a failure of treatment or a re-infection. To distinguish between failure and re-infection, genotyping will be performed.
Relapse is defined by the presence of two positive cultures on respiratory specimens obtained at least 6 months after stopping treatment.
Cure is defined by classical bacteriological criteria, i.e. 2 negative cultures during the last 3 months of treatment and 3 years after stopping treatment. When specimens are not obtained 3 years after stopping treatment, the definition of clinical cure will be based on the absence of relapse at 3 years in survivors.
Analysis of the primary point:
Non-inferiority will be established if the upper limit of the two-sided 95% confidence interval of the difference in the proportion of 6-month negative sputum rate between the two groups (Control arm - Experimental arm) is lower than the non-inferiority margin (10%). Intention-to-treat analysis will be performed followed by a per protocol analysis. A multiple imputations analysis will be performed if more than 5% of the data are missing for the primary endpoint. Farrington-Manning p-value for non-inferiority will be calculated and a two-sided p-value < 0.05 will be required for statistical significance.
Analyses of secondary endpoints:
Given the substantial number of analyses for secondary endpoints, the step-down Bonferonni procedure will be used to control the type I error rate.
Statistical analysis will be performed using SAS® version 9.4 (SAS Institute, Cary, NC).
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
424 participants in 2 patient groups
Loading...
Central trial contact
Claire ANDREJAK, PhD
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal