Status and phase
Conditions
Treatments
About
Tendon injury is one of the most common sports injuries, including local tissue degeneration at the tendon insertion site following inflammation caused by long-term joint movement, friction, or strain, as well as acute traumatic tendon tears and defects of varying degrees due to sports. It is a recognized therapeutic challenge in orthopedics and sports medicine. With the increase in people's physical activities and changes in work styles, tendon injuries have become increasingly prevalent, with at least 30 million tendon injury cases annually. Meanwhile, tendon injuries pose a significant threat to the careers of many elite athletes. Currently, clinical treatments for tendon injuries mainly remain at the stages of physical therapy, surgical suture, and transplantation. Although these treatments have certain effects, their efficacy is limited-primarily because adult tendons lack complete regenerative capacity. As a result, the quality of repaired tendons is far inferior to that of normal tendons, making them prone to tendon adhesion, poor structural and mechanical properties, and frequent re-rupture. Even autologous tendon transplantation can only achieve approximately 40% of the mechanical properties of normal tendons, accompanied by excessive scar tissue formation. Current therapeutic and tissue engineering approaches can only partially improve tendon repair quality, failing to induce complete tendon repair and regeneration. Therefore, exploring new and efficient strategies for the treatment and regeneration of tendon injuries is of great significance.
In recent years, cell therapy has brought new opportunities for improving the repair quality of soft tissues such as tendons. Tendon-derived cells are isolated and extracted from tendons. These cells not only possess stem cell characteristics similar to bone marrow mesenchymal stem cells but also highly express tendon-specific genes and proteins. Therefore, this study intends to first culture and expand tendon stem/progenitor cells (TSPCs) to form therapeutic agents, then apply TSPC-enhanced therapy intraoperatively to patients with rotator cuff tendinopathy, and evaluate its clinical safety and efficacy.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
107 participants in 2 patient groups
Loading...
Central trial contact
ZeTao Wang
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal