Status
Conditions
Treatments
About
Timely and accurate estimation of the surface area and depth of a burn injury is essential for determining an appropriate treatment modality. Inappropriate or inadequate treatment may result in complications and increased societal costs. Burn depth is determined by subjective assessing the characteristics of burn injury. Some objective methods are available (e.g., biopsy and histology, thermography and laser doppler imaging), but these are cumbersome. In assessing burn wounds, laser Doppler imaging (LDI) which has a good correlation with histology, is currently the most widely used and validated noninvasive measurement tool. In addition, it is the only technique that has been approved by the U.S. Food and Drug Administration. However, the use of LDI is accompanied by some disadvantages. The current commercial available LDI device is rather costly, cumbersome and has a poor spatial resolution. Another laser-based technique, laser speckle contrast imaging (LSCI), works with a similar principle and might become an alternative for LDI. LSCI has some advantages over LDI such as higher spatial resolution, much easier to position, no valuable time wasted on setting up the instrument, easy to take several images of burns that have a large surface area and/or much curvature, faster measurements, fraction of the time needed for getting a high-quality measurement, able to follow changes in the perfusion in real time. In contrast to the LDI, the LSCI has not been validated in terms of a diagnostic tool for stratifying the severity of a burn (based on LDI color coding). Consequently, we will compare the LSCI with LDI to improve burn care by providing cheaper, faster and higher resolution imaging technique.
Full description
After receiving adequate information and when informed consent is signed, patients are included. All patients receive usual care. Within 2-5 days post burn the LSCI and LDI are performed. Ideally, LDI is performed after 2 days, scanning up to 5 days is permitted when patients present later post burn or due to logistic reasons. The wounds are scanned by a trained research physician or nurse, during regular wound care.
8.4 Population base: Measurements of microcirculation with laser-based technique will be initiated upon the ethical consent is approved. Fifty burn patients will be included in the study. All patients will be asked for the existence of any comorbid disease. Once the patient meets the inclusion criteria, he will be eligible for the study.
LSCI and LDI devices will alternately be used to record blood flux. Burn wound including the healthy area 5 cm wider than the borders will be scanned by LDI and LSCI. After completing the data collection, all images will be compared to test the linearity between arbitrary units of LDI and LSCI. Based on the measured blood flux, a color image will be created, based on a color map created in a study on volunteers. Blood flux is calculated by the dedicated software.
Names of the patients will be coded with numbers. Only the main investigator will be aware of who corresponds to which number. Results of Perimed (LSCI) and Moore Devices (LDI) will be analyzed with the software PIMsoft 1.5 (Perimed AB, Järfälla, Sweden), MoorLDI2-BI Burn's Software Version 4.0, respectively. Two investigators will perform the analysis. If one investigator will make the analysis, the other will check the results, as well. Stored data will be extracted and stored coded in the castor study management system en electronic data capture system.
Assessment of microcirculation with the Perimed LSCI Pericam PSI System (Perimed AB, Järfälla, Sweden) Laser Speckle Contrast Imager is used to measure skin perfusion. The system uses a divergent laser beam with a wavelength of 785 nm. Perfusion images are acquired by averaging data from 21 images taken in rapid succession (acquisition time 1 seconds), over 1-minute intervals. A flexible working distance from 10 to 40 cm allows measurement areas up to 24 x 24 cm. Tissue blood perfusion is visualized in real time with a resolution of up to 100 µm/pixel. The system is calibrated according to the manufacturer recommendations. Perfusion images will be further analyzed by calculating mean perfusion levels in regions of interest using PIMsoft 1.5 (Perimed AB, Järfälla, Sweden).
Operating procedures:
Assessment of microcirculation with the Moor LDI
MoorLDI2-BI System (Moor Instruments Ltd., Axminster, Devon, UK) is used to measure skin perfusion. The system uses a divergent laser beam with a wavelength of 633 nm. A flexible working distance from 30 to 100 cm allows measurement areas up to 50 x 50 cm. Scan times are ranging from 40 seconds up to 2 minutes. The scan speed is approximately 4ms/pixel. Tissue blood perfusion is visualized in real time with a maximum image resolution of 256x256 pixels. The system is calibrated according to the manufacturer recommendations. Perfusion images will be further analyzed by calculating mean perfusion levels in regions of interest using MoorLDI2-BI Burn's Software Version 4.0.
Operating procedures:
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal