ClinicalTrials.Veeva

Menu

COVID-19 Infections and Mortality in Long-term Care Facilities During the First Wave

C

Centre integre universitaire de sante et de services sociaux du Centre-Sud-de-l'Île-de-Montréal

Status

Completed

Conditions

Old Age; Dementia
Death
Infection, Coronavirus
Covid19
Elderly Infection
Infection Viral
Epidemic Disease
Infections, Respiratory

Treatments

Other: COVID-19 infection

Study type

Observational

Funder types

Other

Identifiers

NCT04782427
CentreSuddeMontréal

Details and patient eligibility

About

The medical charts of all COVID-19 cases (n=1200) from 17 long-term care facilities in Montreal, Canada will be reviewed, to compare patients who survived to patients who did not survive. Through multilevel logistic regression, the risk of death will be estimated for institutional predictors of mortality, while controlling for individual risk factors.

Individual covariates include clinical features (age, sex, Charlston comorbidity index, SMAF autonomy score, severity criteria) and medical treatments (IV fluids, anticoagulation, oxygen, regular opiates, corticosteroids). Aggregate covariates include epidemiological data (attack rates, timing of outbreak) and institutional characteristics (number of beds, air exchange per hour, presence of a dedicated COVID-19 unit at the time of outbreak, staff compliance to infection control measures, staff infection rates, understaffing, proportion of semi-private rooms, proportion of wandering wards and other special units).

Full description

A lot has been written about individual risk factors for COVID-19 death, mostly in the hospitalized population. However, even though most deaths around the world have occurred among the frail and elderly, little is known about the risk factors specific to the long-term care population.

In this retrospective cohort study, the investigators will review the medical charts of all COVID-19 cases (n=1200) from 17 long-term care facilities in Montreal, Canada, to compare patients who survived to patients who did not survive. Through multilevel logistic regression, the risk of death will be estimated for institutional predictors of mortality, while controlling for individual risk factors. The objective is to influence local and national policies in long-term care facilities, in the hopes of avoiding the tragic spring 2020 outcomes during subsequent waves of COVID-19 or future pandemics.

Covariates in the models will be drawn from a review of the medical literature and known risk factors for COVID-19 death. Individual-level covariates include clinical features (age, sex, Charlston comorbidity index, SMAF autonomy score, severity criteria) as well as medical treatments (IV fluids, anticoagulation, oxygen, regular opiates, corticosteroids). Aggregate-level covariates include epidemiological data (attack rates, timing of outbreak) and institutional characteristics (number of beds, air exchange per hour, presence of a dedicated COVID-19 unit at the time of outbreak, staff compliance to infection control measures, staff infection rates, understaffing, proportion of semi-private rooms, proportion of wandering wards and other special units).

Enrollment

1,197 patients

Sex

All

Volunteers

Accepts Healthy Volunteers

Inclusion criteria

  • Resident of a long-term care facility within the CIUSSS Centre-Sud-de-l'Île-de-Montréal
  • Nosocomial COVID-19 infection diagnosis between March 23rd and July 11th 2020

Exclusion criteria

  • Admission to the long-term care facility after July 11th 2020
  • COVID-19 infection which was not acquired within the long-term care facility

Trial contacts and locations

1

Loading...

Data sourced from clinicaltrials.gov

Clinical trials

Find clinical trialsTrials by location
© Copyright 2026 Veeva Systems