Status
Conditions
Study type
Funder types
Identifiers
About
Hypothesis: There are 5 support buttresses in the complex osteocartilaginous architecture of the nose.
Full description
Aim:
Methodology:
67 consecutive patients admitted for facial fractures and who undergo routine CT scans of the face with our protocol of axial and coronal sections taken at 0.6mm and gantry 0 are to be studied. The CT scans are evaluated to assess the position, comminution and displacement of the 5 said buttresses.
The buttresses are graded Grade 1 Simple fracture without displacement Grade 2 Simple fracture with displacement Grade 3 Comminuted fracture without displacement Grade 4 Comminuted fracture with minimal displacement Grade 5 Comminuted fractured with displacement
The septum is graded from Grade 0 Septum is straight Grade 1 Septum is deviated by less than 1 half the distance from the midline to the nasal turbinate Grade 2 Septum is deviated by more than 1 half the distance from the midline to the nasal turbinate Grade 3 Septum is almost touching the nasal turbinate
Variables to be assessed included
Grade of Severity of Nasal and Septal fracture
Assessment of biomechanical stability
Assessment of nasal air-flow via the nasal airways
Methods for data management and analysis (incl. Biostatistical check)
Segmentation and Reconstruction of 3D Nasal Model
Given the CT images of a patient, the nasal bones and surrounding facial bones are segmented and a 3D model of the bones is reconstructed. This can be accomplished using a segmentation and 3D reconstruction software. We have developed a preliminary version of the software for segmenting and reconstructing 3D model of craniofacial bones based on fast marching method. The software can be adapted to focus on reconstructing 3D model of the nasal buttresses.
Nonlinear Registration with Reference Model
The 3D fractured model is registered with a normal reference model for fracture analysis. A novel nonlinear registration technique is required to decouple normal variations among normal people and variations due to fractures. In this way, the normal reference model can be deformed in a manner consistent with normal variations to register to the fractured model. After registration, the registered reference could serve as a model of the patient prior to the injury. Moreover, differences between the fractured model and the registered reference would indicate variations due to fractures. The extent of the fractures and displacements of bones can also be measured.
To accomplish the novel nonlinear registration, a generalized form of source separation method is needed. In particular, the idea of discriminates subspace analysis (Zhang and Sim) developed by our colleagues for analyzing variations of facial images for face recognition may be applicable. The method can decouple variations due to different people and variations due to illumination and view point.
To enhance the accuracy of analysis, multiple normal reference models may be required for the patients in different ethnic groups.
Visualization of 3D Models
Generic visualization tools do not discriminate between the nasal bones and other craniofacial bones. It is difficult and inconvenient to use them to visualize only the nasal structure. So, a software tool will be developed to visualize the nasal structure of the fractured models. It can also be used to visualize the registration of the fractured models with the normal reference and other fracture analysis results.
Classification of Fracture Patterns
After detecting and measuring the fractured bones, the fractured models can be classified according to their fracture patterns. This can be accomplished manually with the assistance of classification software.
Subsequently,
Refinement of Nonlinear Registration Method
Refinement of the nonlinear registration method will be performed to improve its accuracy.
Biomechanical studies
Three dimensional finite element models of the nose, in particular the septum will be constructed from the CT scans. Finite element analysis will be carried out to assess the deformation, stress wave propagation and stress distribution in the nasal structures. Flow simulation using computational fluid dynamics will also be carried out to assess the flow pattern in the nasal cavity due to the nasal fracture.
Finally,
Three dimensional finite element models of the nose with various proposed techniques for the correction of nasal fracture will be carried out to assess the strength and weakness of the resulting nasal structures due to the corrective surgical procedure. Computation fluid dynamics will also be carried out to assess the flow pattern or nasal patency of the airway after the proposed surgical corrections.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
67 participants in 1 patient group
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal