Status
Conditions
Treatments
About
Hepatoma ranks the first on the cancer mortality list in Taiwan, and there are currently no other effective treatment options for advanced HCC. Therefore, alternative medical intervention is needed to improve the survival and quality of life of these patients. Dendritic cells are the most potent type of antigen presenting cells in the human body, and are involved in the regulation of both innate and adoptive immune responses. If we use matured antigen presenting cells pulsed in vitro with appropriate tumor associated antigens under optimal activation conditions. It is anticipated that such treatment might generate or reactivate a cytotoxic T lymphocyte response against tumor cells and thereby inhibit tumor growth.
Although there are excited results of tumor vaccine in animal models but successful clinical tries are rare. There are still some problems needed to be resolved such as immune deficiency of the cancer patients or the defect of T cell receptors or the problems of tumor escape. There are complex compositions in tumor cells to be a tumor antigen that will influence the efficacy of tumor vaccine, so we are going to use tumor lysate to be a tumor antigen.
In this study, the generation of dendritic cells from the patient's peripheral blood will use rhGM-CSF and rhIL-4 as stimulating factors, and matured dendritic cells will pulse with tumor lysate, the ex vivo T cell cytotoxicity for the primary tumor cell will be test. We hope to cooperate with basic study group in our hospital to do more ex vivo tests and clinical trials in the future.
Full description
Hepatoma ranks the first two of the cancer mortality list in Taiwan, and there are currently no effective treatment options for advanced HCC. Therefore, novel medical intervention is needed to improve the survival and quality of life of these patients. Dendritic cells are the most potent type of antigen presenting cells in the human body, and are involved in the regulation of both innate and adoptive immune responses. It is assumed that matured antigen presenting cells pulsed in vitro with appropriate tumor associated antigens under optimal activation conditions might generate or activate a cytotoxic T lymphocyte response against tumor cells and thereby inhibit tumor growth(1,2).
Although there are exciting results of tumor vaccine in animal models but successful clinical tries are lacking. There are some problems needed to be resolved such as immune deficiency of the cancer patients, defect of T cell receptors or the immune evasion of tumor. The efficacy of tumor vaccine is mainly affected by both the heterogenicity of tumor cells and complexity of tumor antigens. Tumor lysates which include multiple antigens, are supposed to be a good source of tumor antigens(3-7). The purpose of this study is to investigate the ability of autologous peripheral blood monocyte-derived dendritic cells (DCs) from hepatoma patients pulsed with autologous tumor lysate to elicit T cells cytotoxicity against hepatoma cells ex vivo. We plan to do HCC primary culture and DCs are derived from peripheral blood monocytes by triggering differentiation with recombinant human granulocyte macrophage colony stimulating factor (rhGM-CSF) and interleukin-4 (rhIL-4) to immature DCs. Immature DCs will be pulsed with autologous hepatoma cell lysates and matured by using a cytokine cocktail. Surface molecule expression on DCs will be analysed by flow cytometry. The ability of the pulsed DCs to stimulate autologous T cell proliferation will be assessed by using carboxyfluorescein diacetate, succinimidyl ester (CFSE) staining. The cytotoxicity of DC-stimulated T cells against primarily cultured hepatoma cells will be estimated by using trypan blue exclusion test. The purpose is to investigate the ability of autologous peripheral blood monocyte-derived dendritic cells (DCs) from hepatoma patients pulsed with autologous tumor lysate to elicit T cells cytotoxicity against hepatoma cells ex vivo.
Reference
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal