Status
Conditions
Treatments
About
It is time-consuming for spine surgeons or radiologists to conduct manual classifications of spinal CT, which may also be correlated with high inter-observer variance. With the development of computer science, deep learning has emerged as a promising technique to classify images from individual level to pixel level. The main of the study is to automatically identify and classify the lesions, or segment targeted structures on spinal CT with deep learning.
Full description
Computer tomography (CT) is one of the most important imaging tool to assist the diagnostic and treatment of spinal disease. Classification of specific targets (e.g. individuals, lesions, etc.) is one of the most common mission of medical image analysis. However, it is time-consuming for spine surgeons or radiologists to conduct manual classifications of spinal CT, which may also be correlated with high inter-observer variance. With the development of computer science, deep learning has emerged as a promising technique to classify images from individual level to pixel level. The main of the study is to automatically identify and classify the lesions, or segment targeted structures on spinal CT with deep learning.
Enrollment
Sex
Ages
Volunteers
Inclusion and exclusion criteria
Inclusion Criteria:
Exclusion Critera:
500 participants in 1 patient group
Loading...
Central trial contact
Guoxin Fan
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal