Status
Conditions
About
Background: Accurate labeling of obstruction site on upright abdominal radiograph is a challenging task. The lack of ground truth leads to poor performance on supervised learning models. To address this issue, self-supervised learning (SSL) is proposed to classify normal, small bowel obstruction (SBO), and large bowel obstruction (LBO) radiographs using a few confirmed samples.
Methods: A few number of confirmed and a large number of unlabeled radiographs were categorized based on the ground truth. The SSL model was firstly trained on the unlabeled radiographs, and then fine-tuned on the confirmed radiographs. ResNet50 and VGG16 were used for the embedded base encoders, whose weights and parameters were adjusted during training process. Furthermore, it was tested on an independent dataset, compared with supervised learning models and human interpreters. Finally, the t-SNE and Grad-CAM were used to visualize the model's interpretation.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
4,500 participants in 3 patient groups
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal