Status
Conditions
Treatments
About
The VASCULAID-RETRO study, within the broader VASCULAID project, aims to create artificial intelligence (AI) algorithms that can predict cardiovascular events and the progression of abdominal aortic aneurysm (AAA) and peripheral arterial disease (PAD). The study plans to gather and analyze data from at least 5000 AAA and 6000 PAD patients, combining existing cohorts and retrospectively collected data. During this project, AI tools will be developed to perform automatic anatomical segmentation and analyses on multimodal imaging. AI prediction algorithms will be developed based on multisource data (imaging, medical history, -omics).
Full description
To date, it is unknown which abdominal aortic aneurysm (AAA) and peripheral arterial disease (PAD) patients will suffer cardiovascular events or in which patients the AAA or PAD will progress. In the VASCULAID project, the VASCULAID-RETRO study aims to leverage data from existing cohorts and retrospectively collected data to develop artificial intelligence (AI) algorithms able to evaluate the risk of cardiovascular events and extent of disease progression.
In order to build and train the algorithms for the predictions, we plan to retrospectively enroll at least 5000 AAA and 6000 PAD patients AI-tools will be applied to the patient data. Automatic anatomical segmentation on images and image analysis on US, CTA and MRI will be performed. Also, algorithms to predict cardiovascular events and AAA or PAD progression based on multi-source data analysis will be developed.
Patient data from European clinical consortium partners is available. This consortium has access to big cohorts with relevant data for the envisioned study that will be used to enrich the existing registries. These data will be used to refine the algorithms developed for the prediction of cardiovascular events and AAA/PAD progression.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
11,000 participants in 2 patient groups
Loading...
Central trial contact
Kak Khee Yeung, MD, PhD; Lotte Rijken, Msc.
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal