ClinicalTrials.Veeva

Menu

Development and Pre-validation of a Machine Learning-based Prediction Algorithm for Early Functional Recovery in Patients Undergoing Hip and Knee Replacement Surgery (FISIO_IA)

I

Istituto Ortopedico Rizzoli

Status

Not yet enrolling

Conditions

Machine Learning
Joint Replacement
Predictive Model
Artificial Intelligence (AI)

Treatments

Other: Predictive Model for Early Mobility Recovery and Length of Stay

Study type

Observational

Funder types

Other

Identifiers

NCT07333560
641/2025/Oss/IOR

Details and patient eligibility

About

The goal of this observational study is to develop and pre-validate a machine learning algorithm to predict early recovery of mobility in patients undergoing hip or knee joint replacement surgery. The primary research question is:

Can a machine learning model accurately classify patients with faster versus slower recovery of autonomous mobility in the first days after joint replacement surgery?

Patients who have undergone elective hip or knee arthroplasty and received post-operative physiotherapy will have their clinical and perioperative data collected retrospectively (2020-2023) and prospectively (March 2026-December 2027). The algorithm will be trained on retrospective data and tested prospectively to evaluate its predictive performance for early mobilization and length of hospital stay.

Full description

This observational study aims to develop and pre-validate a machine learning algorithm to predict early mobility recovery and hospital length of stay in patients undergoing elective hip or knee arthroplasty. The study includes a retrospective phase (2020-2023) using existing clinical and physiotherapy data, and a prospective phase (March 2026-December 2027) to validate the model in routine clinical practice.

Data Collection and Outcomes:

Mobility recovery: assessed by the ability to ascend and descend three steps within the first four postoperative days, recorded in the physiotherapy diary and electronic health record.

Length of stay: considered regular if discharged by the fifth postoperative day; longer stays are defined as prolonged.

Predictors: Baseline demographics (age, sex, BMI, ASA score, preoperative hemoglobin) and clinical/perioperative characteristics (type of surgery and anesthesia, initiation of physiotherapy, pain level, urinary catheter use, orthostatic intolerance).

Sample Size: 943 patients total (600 retrospective, 343 prospective), based on model development requirements and AUROC estimation.

Data Analysis: The dataset will be split into training, validation, and test sets. Multiple supervised learning algorithms (e.g., logistic regression, random forest, gradient boosting) will be compared. Model performance will be evaluated using AUROC, sensitivity, specificity, precision, F1-score, and calibration. Missing data will be handled with imputation or native algorithm methods when supported.

Model Validation: Prospective data will be used to assess model discrimination and calibration, and to identify potential temporal or clinical biases. Retraining may be performed using combined datasets to improve generalizability.

Study Flow: Retrospective patients identified via hospital records; prospective patients identified on the first postoperative physiotherapy session, provided with study information, and consented. Predictive results are stored in a separate registry inaccessible to treating clinicians.

Participating Centers:

IRCCS Istituto Ortopedico Rizzoli, Bologna - patient enrollment. Complex Structure of Medical Physics, Arcispedale S. Maria Nuova - data analysis and AI modeling.

Enrollment

943 estimated patients

Sex

All

Ages

18+ years old

Volunteers

No Healthy Volunteers

Inclusion criteria

  • Adults aged 18 years or older
  • Patients underwent elective hip or knee arthroplasty.
  • Patients for whom postoperative physiotherapy was initiated.

Exclusion criteria

  • Patients who underwent surgery for oncologic disease, femoral fracture, or revision joint arthroplasty.
  • Patients for whom postoperative physiotherapy was not provided due to postoperative complications
  • clinical data are unavailable.

Trial contacts and locations

1

Loading...

Central trial contact

Mattia Morri

Data sourced from clinicaltrials.gov

Clinical trials

Find clinical trialsTrials by location
© Copyright 2026 Veeva Systems