Status and phase
Conditions
Treatments
About
This research aims to study what the baby's body does with morphine and how morphine works in the baby's body. One hundred newborn babies will be enrolled in this study. With a better understanding of the drug doctors and nurses will have more information and better administer the drug in case of pain, stress or discomfort.
Full description
Critically ill immature preterm infants experience multiple noxious stimuli while receiving care in the Neonatal Intensive Care Unit (NICU). These noxious stimuli include, but are not limited to: venipuncture; insertion of intravenous and arterial catheters; suctioning of the nose, mouth and oropharynx; endotracheal intubation for mechanical ventilation; insertion of chest drains; repositioning and other types of patient manipulation. The delivery of optimal doses of analgesics for these noxious stimuli is a major challenge due to the lack of knowledge about drug disposition and its effects in this patient population.
Morphine is the commonest analgesic used in the NICU. The Premature Infant Pain Profile (PIPP) is used to quantify pain in the NICU1. This objective score, which combines physiological and behavioural variables defining levels of discomfort, is used as a guide for the use of morphine in newborn infants. Multidimensional pain assessment tools, such as PIPP, can easily identify behaviour in healthy infants undergoing painful events, however, its efficiency is questionable when applicable to critically ill premature infants with neurological impairment, where the pain processing and modulation may be altered. Pharmacokinetics/Pharmacodynamics (PKPD) models can be used to quantitatively describe and predict drug disposition in the blood and the target organ (e.g., brain) in relation to doses and patient characteristics. Although there has been a global effort to describe morphine plasma levels in this population using a pharmacokinetic modelling approach2-5, PKPD model development has not been reported. The study of morphine pharmacokinetics to determine the optimal dose for balancing analgesia/sedation together with the design of pharmacodynamic model for morphine may provide a better understanding of nociception/pain profile based on the physiological variables of immature infants. Moreover, the PKPD model may be used to achieve optimal therapeutic effects through individualised model-based dose selection. Objective: This study is composed by four main objectives:
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
0 participants in 1 patient group
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal