Status
Conditions
Treatments
About
Identifying the correct arrhythmia at the time of a clinic event including cardiac arrest is of high priority to patients, healthcare organizations, and to public health. Recent developments in artificial intelligence and machine learning are providing new opportunities to rapidly and accurately diagnose cardiac arrhythmias and for how new mobile health and cardiac telemetry devices are used in patient care. The current investigation aims to validate a new artificial intelligence statistical approach called 'convolution neural network classifier' and its performance to different arrhythmias diagnosed on 12-lead ECGs and single-lead Holter/event monitoring. These arrhythmias include; atrial fibrillation, supraventricular tachycardia, AV-block, asystole, ventricular tachycardia and ventricular fibrillation, and will be benchmarked to the American Heart Association performance criteria (95% one-sided confidence interval of 67-92% based on arrhythmia type). In order to do so, the study approach is to create a large ECG database of de-identified raw ECG data, and to train the neural network on the ECG data in order to improve the diagnostic accuracy.
Enrollment
Sex
Volunteers
Inclusion criteria
Exclusion criteria
25,458 participants in 1 patient group
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal