Status
Conditions
About
Friedreich's ataxia is characterized by progressive alterations in the function of the cerebellum accompanied by an atrophy of the spinal cord. Although the genetic defect responsible for the disease has been identified more than 15 years ago, objective markers of the pathologic process (i.e., biomarkers) that would allow measuring the effects of potential therapies are still lacking. Moreover, it is still unclear how the malfunction of the cerebellum affects the rest of the brain, and understanding the connectivity and neurochemistry of the central nervous system might yield new insights in the understanding of the disease, in addition to providing potential markers.
To address these needs, the investigators aim at utilizing the capabilities of Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS). Using techniques called Diffusion Imaging, resting-state functional MRI, and Proton Spectroscopy (1H MRS), the investigators propose to determine the differences in the connectivity and neurochemistry of the spinal cord and the brain between patients affected by Friedreich's ataxia and healthy controls. The investigators plan on imaging both patients and control subjects using a 3T magnet, a system that although not yet available in all medical facilities, is becoming standard in most hospitals and clinics. The first aim is to scan patients already scanned last year (12-month follow-up). The second aim is to scan patients at an early stage of the disease.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
85 participants in 2 patient groups
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal