Status
Conditions
Treatments
About
This research aims to study the properties of metallic nanoparticles"MNPs" (silver nanoparticles "AgNps" and copper nanoparticles "CuNps") on the 2 most common nosocomial bacteria which are highly resistant to antibiotics including Staphylococcus aureus and Pseudomonas aeruginosa, to evaluate the growth inhibiting properties of MNPs on all bacterial isolates, to evaluate the biofilm inhibitory effect on biofilm forming bacterial isolates and the synergistic effect of these MNPs in combination with antibiotics on the antibiotic resistant isolates.
Full description
There is a rapid increase in the number of health care associated infections (HAIs) due to multi-drug resistant (MDR) bacterial strains which have a worse prognosis being associated with significant morbidity and mortality, particularly in critically ill patients. The main problem with MDR strains is their limited treatment options, posing a major challenge for health care providers.The increasing utilization and immense studies of nanoparticles have brought new perspectives towards new antimicrobial material that could hinder the MDR bacteria pandemic currently faced. Particularly, metallic nanoparticles exhibit strong biocidal properties on different bacterial species, including MDR bacteria. Another important aspect of the antimicrobial properties of metallic nanoparticles is their potential to eradicate or inhibit microbial biofilm formation, which is an important virulence factor in many localized chronic infections.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
100 participants in 2 patient groups
Loading...
Central trial contact
Ekram Abdelrahman, lecturer; Nahed Fathallah, lecturer
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal