ClinicalTrials.Veeva

Menu

Effects of Ambulation Training Utilizing an Exoskeleton Robot on Subjects With Spinal Cord Injury

C

China Medical University

Status

Unknown

Conditions

Spinal Cord Injuries

Treatments

Device: Ambulation training utilizing an exoskeleton robot

Study type

Interventional

Funder types

Other

Identifiers

NCT03340792
DMR-107-085

Details and patient eligibility

About

The present study aims to investigate the effects of ReWalk exoskeleton robot training on various physiological and psychological parameters among subjects with spinal cord injury, including body composition and bone mineral mass, balance ability, bowel and bladder symptoms, severity of pain, psychological well-being, and quality of life. Ten patients with paraplegia caused by spinal cord injury will be recruited from the out-patient clinic of Department of Physical Medicine and Rehabilitation at the China Medical University hospital. All participants will undergo dual X-ray absorptiometry to evaluate the baseline bone mineral density. Eligible participants will then take ReWalk training sessions comprises of 3 x 1-hour sessions per week for 40 sessions. A comprehensive battery of outcome measures, including body composition and bone mineral mass, balance ability, bowel and bladder symptoms, severity of pain, psychological well-being, and quality of life, will be utilized for comparison after 40 sessions of ReWalk ambulation training.

Full description

The loss of upright mobility has a profound effect on the health and quality of life for individuals with a spinal cord injury (SCI). The ReWalk exoskeleton is an FDA-cleared, wearable, computer-controlled exoskeleton robot that enables subjects with SCI to stand and walk using crutches to keep balance. China Medical University Hospital is the second hospital in Taiwan to acquire this relatively new rehabilitation robot. ReWalk exoskeleton not only helps the patients with paraplegia regain their ability to walk, previous studies also suggest that restoration of upright mobility may help mitigate the physical and psychological decline routinely experienced by individuals with SCI.

The present study aims to investigate the effects of ReWalk exoskeleton robot training on various physiological and psychological parameters among subjects with spinal cord injury, including body composition and bone mineral mass, balance ability, bowel and bladder symptoms, severity of pain, psychological well-being, and quality of life. Ten patients with paraplegia caused by spinal cord injury will be recruited from the out-patient clinic of Department of Physical Medicine and Rehabilitation at the China Medical University hospital. All participants will undergo dual X-ray absorptiometry to evaluate the baseline bone mineral density. Eligible participants will then take ReWalk training sessions comprises of 3 x 1-hour sessions per week for 40 sessions. The first 20 or so hours of training sessions focus on basic ReWalk skills, and the following training sessions focus on advanced ReWalk skills. A comprehensive battery of outcome measures, including body composition and bone mineral mass, balance ability, bowel and bladder symptoms, severity of pain, psychological well-being, and quality of life, will be utilized to obtain an in-depth overview and comparison of the treatment efficacy after 40 sessions of ReWalk ambulation training. The measures include: muscle strength measurements, Berg Balance Scale, modified Functional Reach Test, 10-Meters Walking Test, Timed Up and Go test, the Short Form-36 and Spinal Cord Injury-Quality Of Life questionnaires for health-related quality of life measurement. Dual X-ray absorptiometry will be used to measure the bone mineral density of the lumbar spine, the proximal femoral region and the distal forearms. It will also be used to estimate fat mass and lean body mass of the participants. All the outcome assessments, except for the Timed Up and Go and the 10-Metersr Walking Test, will be performed prior to the first training session and again at the end of the ReWalk ambulation training sessions. Descriptive data will be provided for all demographic parameters and with a mix-design ANOVA analysis employed to compare pre- and post-training conditions for all repeated outcome measures.

Enrollment

10 estimated patients

Sex

All

Ages

20 to 65 years old

Volunteers

No Healthy Volunteers

Inclusion criteria

  1. Between the age of 20-65 years old;
  2. Have paraplegia resulting from thoracic or lumbar spinal cord injury.
  3. At least 6 months after onset of the spinal cord injury
  4. Well motivated and willing to participate 40 hours of ReWalk ambulation training sessions.

Exclusion criteria

  1. Have spinal cord injury neurologic level above T4
  2. Height greater than 190 cm or lower than160 cm
  3. Weight greater than 100 kg
  4. Have osteoporosis (T-score < -2.5)
  5. Deep vein thrombosis
  6. Severe orthostatic hypotension precluding standing and walking training
  7. Pregnancy
  8. Cognitive impairments that would impact on the safe participation in the study
  9. Severe spasticity of lower limbs (Modified Ashworth Scale >3)
  10. Contracture of the ankle, or a knee flexion contracture greater than 10 degrees
  11. Musculoskeletal conditions that affected gait capacity
  12. Co-existence of other neurological diseases

Trial design

Primary purpose

Supportive Care

Allocation

N/A

Interventional model

Single Group Assignment

Masking

None (Open label)

10 participants in 1 patient group

Exoskeleton robot ambulation training
Experimental group
Description:
Ambulation training utilizing an exoskeleton robot
Treatment:
Device: Ambulation training utilizing an exoskeleton robot

Trial contacts and locations

1

Loading...

Central trial contact

Nai-Hsin Meng, M.D.

Data sourced from clinicaltrials.gov

Clinical trials

Find clinical trialsTrials by location
© Copyright 2026 Veeva Systems