Status and phase
Conditions
Treatments
About
The main goal of this Collaborative Proposal is to investigate biochemical, functional, and structural neuroimaging changes following non-invasive brain stimulation in patients with chronic widespread pain: fibromyalgia (FM). The fact that multiple therapeutic modalities which focus on central mechanisms provide modest relief for these patients raises the possibility that the cause for the chronicity of this debilitating disorder may lie within the brain itself. We propose that changes in the cortical milieu may result from prolonged experience of pain and suffering. Our previous results suggest changes in excitatory neurotransmitter levels, connectivity between multiple brain networks, and cortical thickness coincide within central neural loci related to pain perception and modulation in FM. Interestingly, modulation of cortical activity can be achieved noninvasively by a novel tool, transcranial direct current stimulation (tDCS), which has been reported to produce lasting therapeutic effects in chronic pain, especially FM. We propose to study the long-term effects of tDCS application on multiple levels of the central nervous system in FM patients. This project has significant clinical relevance and has the support of collaborators from University of Michigan and Harvard University
Full description
BACKGROUND AND SIGNIFICANCE:
Fibromyalgia (FM):
*Fibromyalgia is the second most common rheumatologic disorder, behind osteoarthritis, afflicting 2-4% of the population of industrialized countries.(Jacobsen and Bredkjaer, 1992; Wolfe et al., 1990) To fulfill the criteria for FM established by the American College of Rheumatology in 1990, an individual must have both chronic widespread pain involving all four quadrants of the body (and the axial skeleton), and the presence of 11 of 18 pre-defined "tender points" on examination. A positive tender point is identified when an individual complains of pain when approximately four kilograms of pressure is applied to one of these points by an examiner. FM is the prototypical "central" or "non-nociceptive" pain syndrome. Research performed within the past decade has clarified a number of important issues regarding this condition. Multiple studies suggest neurological dysfunction as a hallmark of this disease (Clauw and Crofford, 2003), and this is supported by a number of objective functional neuroimaging abnormalities. (Gracely et al., 2002; Harris et al., 2007; Mountz et al., 1995) Overall the data suggest that the primary abnormality in FM is a generalized disturbance in central nervous system pain processing, leading individuals to sense pain throughout the body in the absence of inflammatory or patho-anatomic damage. (Clauw and Chrousos, 1997; Yunus, 1992) Most FM neuroimaging studies to date have examined brain responses to a painful stimulus, as the imaging of endogenous chronic pain is notoriously difficult. (Baliki et al., 2007). However few studies have examined the modulation of specific brain regions and how this impacts neurotransmitter levels, network connectivity, and structural changes such as cortical thickness within the same subjects.
Transcranial Direct Current Stimulation (tDCS):
*Therapies that directly modulate brain activity in specific neural networks might be particularly suited to relieve chronic pain in individuals with FM. Ultimately, this underlies the interest in neurostimulation approaches, which are being explored at multiple levels of the neuroaxis, including the peripheral nerves, spinal cord, deep brain structures, and cortex.(Lefaucheur, 2004) Among the methods of central neurostimulation, two of them, repetitive transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), are particularly appealing as they can change brain activity in a non-invasive, painless and safe way. TMS is a method of brain stimulation that was developed in 1985 (Barker et al., 1985). It is based on a time-varying magnetic field that generates an electric current inside the skull where it can be focused and restricted to small brain areas by appropriate stimulation coil geometry and size.(Pascual-Leone et al., 1999). This current, if applied repetitively, repetitive TMS (rTMS), induces a cortical modulation that lasts beyond the time of stimulation.(Pascual-Leone et al., 1999) Although tDCS has different mechanisms of action, it induces similar modulatory effects. Several animal studies in the 1960s showed that this technique changes brain activity reliably (Nitsche et al., 2003a, 2003b). tDCS is based on the application of a weak direct current to the scalp that flows between two relatively large electrodes-anode and cathode. Some studies have shown that the efficacy of tDCS depends critically on parameters such as electrode position and current strength.(Nitsche et al., 2003a, 2003b) In fact, application of tDCS for 13 min to the motor cortex can modulate cortical excitability for several hours.(Nitsche and Paulus, 2000; Nitsche and Paulus, 2001) In addition, this technique can be used to obtain clinical gains in neuropsychiatric disorders such as stroke and epilepsy.(Fregni and Pascual-Leone, 2007) In this study we will investigate the modulatory effect of 5 daily tDCS sessions on biochemical, functional, and structural systems and its association with the clinical output in FM.
Proton Magnetic Resonance Spectroscopy (H-MRS) in FM:
*H-MRS neuroimaging obtains chemical spectra from multiple volume-image elements, or voxels, within the human brain using radiofrequencies that excite protons. (Ross and Sachdev, 2004) Specific molecules are identified by their characteristic resonance frequency in the spectrum. Once acquired, spectra are analyzed to determine the relative concentrations of different molecules or central nervous system metabolites within the voxel or region of interest. Typical metabolites identified are: glutamate (Glu), N-acetyl-aspartate (NAA), creatine (Cr), choline (Cho), lactate, lipid, myoinositol, gamma-aminobutyric acid (GABA), and glutamine (Gln). Glu and GABA are of particular importance to brain neurophysiology as they are components of excitatory and inhibitory neurotransmission, respectively. Glu binds to both ionotropic and metabotropic receptors located on postsynaptic neurons and causes excitability (i.e. depolarization). Moreover changes in the strength of Glu neurotransmission are typically indicative of synaptic plasticity, a process proposed to be involved in chronic pain.(Zhuo, 2008) H-MRS methods display multiple features which are amenable to longitudinal studies. High-resolution anatomical scans can be used to isolate identical brain regions on successive sessions that are even weeks apart. Measurement of metabolites within the central nervous system has been largely understudied in the field of pain. Grachev et al. has reported that the level of NAA, a marker for neuronal viability and also function (Nakano et al., 1998; Sager et al., 2001), is lower within the dorsolateral prefrontal cortex of individuals with chronic low back pain as compared to healthy controls.(Grachev et al., 2000) In addition, a recent investigation has begun to implement H-MRS technology to assess functional changes in the concentrations of Glu in response to evoked pain stimuli.(Mullins et al., 2005) Mullins et al. have observed that Glu levels increase by as much as 10% in the anterior cingulate in response to cold pain applied to the foot. Glu in the central nervous system may play a role in FM pathophysiology. A study by Peres et al. found that cerebrospinal fluid levels of Glu were elevated in FM patients possibly having consequences for glutamatergic neurotransmission.(Peres et al., 2004) Administration of ketamine, a glutamate channel blocker, has been found to reduce experimental pain (Graven-Nielsen et al., 2000) and clinical pain (Cohen et al., 2006) in FM. Moreover our group recently demonstrated that long-term treatment of FM patients with acupuncture can lead to changes in Glu levels within the posterior insula and that these changes are highly correlated with changes in pain: greater reductions in Glu are associated with greater reductions in both experimental and clinical pain (Harris et al., 2008). In addition, we have recently compared posterior insula Glu and combined Glu + Gln (Glx) between FM patients and matched controls and have demonstrated that the patients have elevated Glx (and Glu) levels. (Harris et al., 2009).
Resting state networks (RSNs) in FM:
White (WM) and Gray Matter (GM) Plasticity in Fibromyalgia:
*The cortical mantle is a highly specialized, folded structure composed of a thin layer of GM. Abnormal variations in the thickness of the cortical mantle might reflect pathophysiological changes of intrinsic structure and integrity of the cortical laminae. Recently, some studies have shown this correlation in chronic pain diseases such as back pain (Apkarian et al., 2004), migraine (DaSilva et al., 2007b; Granziera et al., 2006) and trigeminal neuropathic pain (see preliminary data). The implications of an alteration in these diseases are either degenerative processes or neuroplasticassociated mechanisms. Apkarian and colleagues (Apkarian et al., 2004) found reduction in the gray matter of DLPFC of chronic back pain patients when compared to healthy controls using a volumetric based approach. More recently, such GM volume reduction was also found in the parahippocampus, and cingulate cortex of patients with fibromyalgia when compared to healthy controls. However, it seems that similar changes observed in the GM of fibromyalgia patients may be more related to comorbid affective disorders than the pain endurance (Peres et al., 2004; Wood et al., 2009). Using more sensitive and reliable neuroimaging tools in trigeminal neuropathic pain patients our group found cortical thickness changes that were spatially co-localized with functional allodynic (brush induced pain) activation. In addition, this pattern of concurrent structural and functional changes in chronic pain patients is influenced by somatotopic localization (sensorimotor cortex), known functionality of the specific region (sensory-discriminative and affective-motivational), underline activation/deactivation following allodynic stimulation and the duration of the disorder (see preliminary data). In another study of migraine patients, we found increased cortical thickness of caudal sensorimotor cortex in migraineurs compared to controls (DaSilva et al., 2007a). In the cortical mantle, the thickness changes in the sensory cortex could be due to the chronic sensory stimulation provoked by chronic pain. This is in line with a recent study that showed cortical thickening after sustained stimulation of the motor system (Draganski et al., 2004). In this study, volunteers who have learned to juggle showed transient and selective thickening of the motor cortex, as well as the motion-visual areas (MT/V5), as compared to the pre-learned phase. This suggests that overstimulation of the sensory-discriminative and affective-motivational neuronal systems in chronic pain may induce structural alterations in the cortex that is co-localized with inefficient pain modulation by the opioidergic system at a molecular level.
Evaluation of Diffuse Noxious Inhibitory Controls (DNIC):
RATIONALE (proposed research, and potential benefits to patients and/or society):
SPECIFIC AIMS (Research Objectives):
a.The main goal of this Collaborative Proposal is to investigate biochemical, functional, and structural neuroimaging changes following non-invasive brain stimulation in patients with chronic widespread pain: fibromyalgia (FM). Additionally, we aim to:
*Determine the effects of tDCS on the excitatory neurotransmitter glutamate (Glu) within the insula (posterior and anterior) and thalamus in individuals with FM. Glu levels within the insula and thalamus will be reduced following tDCS, reflecting a down regulation of excitatory neurotransmission in these pain regions.
RECRUITMENT METHODS:
a.Potential subjects will be recruited by public advertisement in the School of Dentistry clinics, including MCOHR, and the Chronic Pain and Fatigue Research Center in addition to other University of Michigan clinics. They will also be recruited via UMClinicalStudies.org, the DaSilva lab webpage (with a flyer for the study listed under current research), ClinicalTrials.gov, and the U.S. National Institutes of Health. In addition, subjects may be recruited by the PI or study staff in a private setting. The potential subject's healthcare providers will be able to suggest the availability of the study and inform them of a place where they will be able to find more information about participating in the study.
STUDY PROCEDURES:
RISKS/DISCOMFORT:
Enrollment
Sex
Ages
Volunteers
Inclusion and exclusion criteria
The inclusion criteria are:
The exclusion criteria are:
Primary purpose
Allocation
Interventional model
Masking
13 participants in 1 patient group
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal