ClinicalTrials.Veeva

Menu

Effects of Monounsaturated Fatty Acids on Intestinal Lipid Metabolism in Insulin Resistant Subjects (MUFA )

L

Laval University

Status

Completed

Conditions

Metabolic Syndrome

Treatments

Other: Monounsaturated fatty acids diet
Other: Saturated fatty acids diet

Study type

Interventional

Funder types

Other

Identifiers

NCT03872349
INAF-MUFA

Details and patient eligibility

About

The overaccumulation of apolipoprotein (apo)B-48-containing lipoproteins of intestinal origin observed in patients with insulin-resistance is now thought to be attributable to both elevated intestinal production and reduced clearance of these lipoproteins. Substantial evidence exists indicating that elevated plasma levels of these lipoproteins are associated with increased cardiovascular disease (CVD) risk. Therefore, reduction of atherogenic plasma triglyceride-rich lipoproteins à (TRL) levels of intestinal origin appears to be crucial to improve CVD risk associated with insulin-resistance. In this regard, there is some evidence that the clinical recommendation to replace dietary saturated fatty acids (SFAs) by monounsaturated fatty acids (MUFAs) reduces CVD risk in the general population. Although the beneficial impact of PUFAs on CVD risk has been related primarily to favorable changes in plasma LDL-cholesterol levels, recent data suggest that chronic MUFA consumption may also exert beneficial effects on CVD risk by reducing postprandial lipemia. The impact of substituting SFAs by MUFAs on postprandial lipid response may be of even greater significance in dyslipidemic patients with insulin-resistance among whom intestinal TRLs represent a large proportion of the atherogenic lipoproteins. The general objective of the proposed research is to investigate how dietary MUFAs in place of SFAs modify intestinal lipoprotein metabolism in men and women with dyslipidemia associated with insulin-resistance. The investigators hypothesize that the intestinal secretion of apoB-48-containing lipoproteins will be lower following a diet rich in MUFAs than after consuming a diet rich in SFAs. The investigators also hypothesize that substitution of SFAs by MUFAs will be associated with significant alterations in expression of key genes and proteins involved in intestinal lipoprotein metabolism.

Enrollment

18 patients

Sex

All

Ages

18 to 60 years old

Volunteers

No Healthy Volunteers

Inclusion criteria

  • Men and women aged between 18-60 years
  • Waist circumference > 102 cm (men) and > 88 cm (women)
  • HDL-cholesterol < 1.1 mmol/L (men) and < 1.3 mmol/L (women)
  • Triglycerides > 1.7 mmol/L
  • Fasting blood glucose > 6.1 mmol/L
  • Normal blood pressure (<130/85)

Exclusion criteria

  • Men and women < 18 or > 60 years
  • Smokers (> 1 cigarette/day)
  • Body weight variation > 10% during the last 6 months prior to the study baseline
  • Subjects with a previous history of cardiovascular disease
  • Subjects with type 2 diabetes
  • Subjects with a monogenic dyslipidemia
  • Subjects on hypertension medications or medications known to affect lipoprotein metabolism or the integrity of gastrointestinal mucosa
  • Subjects with endocrine or gastrointestinal disorders
  • History of alcohol or drug abuse within the past 2 years
  • Subjects who are in a situation or have any condition that, in the opinion of the investigator, may interfere with optimal participation in the study.

Trial design

Primary purpose

Prevention

Allocation

Randomized

Interventional model

Crossover Assignment

Masking

Triple Blind

18 participants in 2 patient groups

Monounsaturated fatty acids diet
Experimental group
Description:
During 4 weeks, subjects eat a diet high in monounsaturated fatty acids (percent of total caloric intake: 15.0% from proteins; 50.0% from carbohydrates; 35.0% from fat: 7.1% from saturated fat; 20.7% from monounsaturated fat; 7.2% from n-6 polyunsaturated fat).
Treatment:
Other: Saturated fatty acids diet
Other: Monounsaturated fatty acids diet
Saturated fatty acids diet
Experimental group
Description:
During 4 weeks, subjects eat a diet high in polyunsaturated fatty acids (percent of total caloric intake: 15.0% from proteins; 50.0% from carbohydrates; 35.0% from fat: 13.4% from saturated fat; 14.4% from monounsaturated fat; 7.2% from n-6 polyunsaturated fat).
Treatment:
Other: Saturated fatty acids diet
Other: Monounsaturated fatty acids diet

Trial contacts and locations

1

Loading...

Central trial contact

Patrick Couture, MD, FRCP, PhD; André Tremblay, PhD

Data sourced from clinicaltrials.gov

Clinical trials

Find clinical trialsTrials by location
© Copyright 2026 Veeva Systems