Status and phase
Conditions
Treatments
About
Malaria in pregnancy is potentially fatal to both the mother and the foetus particularly in the primigravidae. Implementation of appropriate control and preventive measures is challenged by the fact that malaria infection in pregnancy is often asymptomatic and parasitized red blood cells sequestrated in the placental microcirculation may not be detectable in the peripheral blood. In addition, the widespread prevalence of parasites resistant to chloroquine and sulphadoxine-pyrimethamine (SP) and, the safety concerns about newer antimalarials, poverty and inadequate supply have made antimalarial treatment options available to pregnant women very limited. These have necessitated an urgent search for alternative safe and efficacious treatment options for pregnant women. The objective of this study is to assess the efficacy, safety and tolerability of four antimalarial treatment options in rural Ghana within a programme setting.
Full description
Primary objective:
To determine the effect of AQ, SP and the AQ+SP combination compared with CQ treatment on the prevalence of peripheral parasitaemia on days 14 and 28 post treatment.
Secondary objectives:
Study location and population:
The study was carried out at the St. Theresa's Hospital in the Nkoranza district of the Brong Ahafo Region of Ghana. The St. Theresa's hospital is a general district hospital. It has a bed capacity of 80 and provides all basic medical services including adult medicine, paediatrics, surgery and obstetrics and gynaecology. The study enrolled pregnant women of all parities attending the St. Theresa's Hospital's antenatal clinic with a gestational age of 16 weeks and above between March 2003 and September 2004.
Methods:
Antennal screening and enrolment:
All pregnant women who attended antenatal clinics were screened for malaria antigens with OptiMAL dipsticks. Those with a positive antigen test were considered eligible, and after informed consent had been obtained from them 5mls of venous blood was drawn from an antecubital vein for baseline measurements of haemoglobin, white blood cell counts (total and differential), bilirubin, alanine aminotransferase, aspartate aminotransferase and gamma-glutamyl transferase and for making filter paper blood spots. Women were then assessed clinically and obstetrically with the view to enrolling them into the study. Pregnancy viability and gestational age were confirmed with ultrasound scanning by the study clinician or the principal investigator. Pregnant women with positive malaria antigen tests confirmed microscopically were randomised into four treatment arms if they satisfied all inclusion criteria.
Follow-up schedule:
Field workers visited the study women in their homes following the initial supervised drug administration at the antenatal clinic on post treatment days 3, 7, 14 and 28 and performed the following routines.
Subsequently, pregnant women were seen at the antenatal clinic monthly and, for those with 32 weeks and above of gestation fortnightly. At these visits, they were actively screened for peripheral parasitaemia using OptiMAL dipstick test. At any time before delivery if the test was negative, the woman remained on daily haematinics. If women who were already enrolled had positive antigen test confirmed by microscopy, they received another course of the treatment they were initially assigned to. Women were enrolled in the study only for the first episode of malaria detected during the antenatal visit. At delivery, midwives recorded birth weights and any stillbirths, perinatal deaths or congenital abnormalities. They also made slides from peripheral, placental and cord blood and sampled maternal blood for haemoglobin measurements. Any record of a congenital deformity was verified and confirmed by a clinician. The women and their babies were visited at home at six weeks post delivery to record any neonatal adverse events such as deaths or severe morbidity.
Outcome measures:
Primary
Secondary
Sample Size:
This was based on the assumption of a 28-day parasitological clearance of 90% for AQ, SP and the AQ+SP combination, and 78% for chloroquine (α = 5% power = 90%). Allowing for a 15% loss to follow-up, 225 pregnant women were recruited into each of the 4 treatment arms of the study giving a total study size of 900 pregnant women.
Data and safety monitoring board:
A data and safety monitoring board (DSMB) was constituted for the project. The board was responsible for:
Sex
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal