Status
Conditions
Treatments
About
Neuromodulation is a fast growing field that offers a wide range of applications for both understanding and treating the brain. Future research for non-invasive neuromodulation will need to elucidate the optimal frequency, duration, and intensity of stimulation for a variety of technologies and diseases. Closed loop stimulation is thus a promising research area that allows for responsive stimulation and real time symptom management. Our project is proposed to develop and test a novel noninvasive neuromodulation integrating transcranial focused ultrasound stimulation (tFUS) with electrophysiological source imaging (ESI-tFUS) to allow evidence-based neuromodulation for brain research and the management of brain conditions. Despite the recent developments and attention surrounding tFUS, relatively little is known about the mechanisms and optimal parameters of this stimulation technology. The addition of ESI neuroimaging, aimed at providing biomarkers to assess the effects of tFUS neuromodulation, could provide crucial necessary information regarding the neural response to the applied stimulation in real-time. In order for tFUS to be further developed and transformed into a robust neuromodulation technology, an integrated electrophysiological source-imaging-guided tFUS system to allow for individualized and responsive stimulation is needed.
The purpose of this study is to develop and evaluate the proposed ESI-tFUS in human subjects using motor and somatosensory paradigms.
Full description
In this protocol, the following hypothesis will be tested; the electroencephalography (EEG) and transcranial focused ultrasound (tFUS) will be used to quantify and optimize stimulation effects. We will test the hypothesis that tFUS can induce regional brain activity and use EEG to localize and image the brain electrical activity as induced by TFUS stimulation. Subjects will be recruited for MRI scan and then undergo motor and/or sensory tasks, and during these tasks, subjects will receive tFUS and concurrently be monitored by EEG. This tFUS-EEG study is aimed at exploring effects of tFUS and the use of EEG in providing electrophysiological responses to brain activation following tFUS stimulation.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Subjects having any of the following conditions will be excluded from this study:
Primary purpose
Allocation
Interventional model
Masking
80 participants in 2 patient groups
Loading...
Central trial contact
Joshua Kosnoff
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal