Status
Conditions
Treatments
About
Type 2 diabetes results in a host of neuromuscular, muscular, and autonomic system impairments that accelerate age-associated limitations in functional independence and the risk of falls. Diabetic peripheral neuropathy (DPN) contributes to functional declines in balance and mobility because of limitations metabolic abnormalities. The constellation of impairments accompanying type 2 diabetes diminishes muscle function and performance including strength and power. Loss of strength at higher speeds of movement (deficit in power) occurs in neural activation of muscles, changes in muscle properties, and through in older individuals with DPN compared to older controls. Consequently, this deficit in speed dependent muscle power production leads to limitations in rapidly responding to sudden loss of balance stability to prevent falling. The goal of this pilot research program is to determine the feasibility and effectiveness of a mechanism-based therapeutic intervention fro improving balance and mobility functions and preventing falls in older adults with DPN. The investigators pan to use the results from this pilot study to design and implement a larger randomized control trial.
Full description
The long-term goal of this research is to establish the effectiveness of a mechanism-based therapeutic intervention for improving balance and mobility functions and preventing falls in older adults with type 2 diabetic peripheral neuropathy (DPN).
Specific Aim 1 will determine if combined high intensity isolated leg muscle power exercise with balance perturbation training (ActiveStep) and aerobic exercise achieves greater improvements in balance stabilization (protective stepping behavior and kinematics) and mobility function (gait parameters and timed functional measures) than a lifestyle based intervention that primarily focuses on aerobic exercise through underlying mechanisms of improved neuromuscular activation (rate and magnitude) and sensorimotor control, improved muscle quality, and increased blood flow to enhance neuromuscular and sensorimotor performance in people with DPN.
Specific Aim #2: To determine if a neuromotor balance training program combined with muscle power exercise training and aerobic exercise, leading to improved neuromuscular and sensorimotor mechanisms, is more effective in improving clinical tests of balance and mobility functions in those with DPN compared with a traditional exercise intervention.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
3 participants in 1 patient group
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal