Status
Conditions
Treatments
About
More than 5 million people live with Alzheimer's dementia (AD) in North America. No effective treatment exists yet probably because by the time AD has developed it is too late to intervene. Mild Cognitive Impairment (MCI) is a clinical state that typically precedes AD. In MCI, the prefrontal cortex supports compensatory mechanisms that depend on robust synaptic plasticity and that delay progression to AD. Using a neurostimulation approach that enhances prefrontal cortical plasticity in vivo, this project aims to enhance prefrontal cortical plasticity and function in patients with MCI. If successful, this project would discover a treatment modality that enhances compensation in MCI and ultimately, prevents progression to AD.
Full description
Paired Associative Stimulation (PAS) is a neurostimulation approach that induces cortical plasticity by simulating spike-timing-dependent plasticity. Combining PAS with electroencephalography (EEG) (PAS-EEG), we can assess dorsolateral prefrontal cortex (DLPFC) plasticity in vivo. Using PAS-EEG, we have demonstrated that patients with AD are impaired on DLPFC plasticity compared to healthy control (HC) individuals and that DLPFC plasticity is associated with working memory in AD and HC individuals. We have also shown that a 2-week course of daily PAS to the left DLPFC restores DLPFC plasticity in patients with AD and enhances their working memory.
Thus, we propose to study DLPFC plasticity and its relationship to executive function in MCI and then assess the efficacy of a 2-week course of PAS in enhancing DLPFC plasticity and executive function in this population.
If successful, this project will identify a novel neurostimulation intervention (PAS) to enhance prefrontal cortical function in MCI patients. This enhancement could result in modifying the trajectory of Alzheimer's disease by delaying the progression from MCI to clinical AD. This project will also identify a mechanism (neuroplasticity) that underlies enhanced prefrontal cortical function. Other interventions (e.g. behavioral, neurostimulation, pharmacological) could then be tested whether they engage neuroplasticity to enhance prefrontal cortical function.
The primary objectives and hypotheses of the study are as follows:
Objective 1: To compare baseline DLPFC plasticity and its relationship to executive function in MCI vs. HC participants. Hypothesis 1a: MCI participants will be impaired on PAS-LTP (TMS-induced cortical evoked activity) in the left DLPFC compared to HC participants. Hypothesis 1b: MCI participants will be impaired on 2-back d' compared to HC participants. Hypothesis 1c: MCI participants will be impaired on a composite executive function measure compared to HC participants. Hypothesis 1d: PAS-LTP will be associated with 2-back d' in MCI and HC participants after controlling for age, sex, and education. Hypothesis 1e: PAS-LTP will be associated with composite executive function measure in MCI and HC participants after controlling for age, sex, and education.
Objective 2: To assess the efficacy of a 10-session course of bilateral PAS in enhancing DLPFC plasticity and executive function in MCI participants. Hypothesis 2a: MCI participants randomized to 10-session course of active PAS will experience higher PAS-LTP in the left DLPFC immediately and 1 and 4 weeks after the course compared to MCI participants randomized to a 10-session course of PAS-C. Hypothesis 2b: MCI participants randomized to a 10-session course of active PAS will experience better 2-back performance immediately and 1 and 4 weeks following the 10-session course compared to MCI participants randomized to the course of PAS-C. Hypothesis 2c: MCI participants randomized to a 10-session course of active PAS will experience higher composite executive function scores immediately and 1 and 4 weeks following the 10-session course compared to MCI participants randomized to the course of PAS-C.
Objective 3: To assess whether changes in DLPFC plasticity mediate changes in executive function in MCI participants following the 10-session course. Hypothesis 3a: Changes in PAS-LTP immediately and 1 and 4 weeks following the 10-session course will mediate changes in 2-back d' at all of these three follow-up time points. Hypothesis 3b: Changes in PAS-LTP immediately and 1 and 4 weeks following the 10-session course will mediate changes in composite executive function measure at all of these three follow-up time points. Conditions/focus of study (primary disease or condition being studied).
Objective 4: Evaluating eye movement in addition to EEG as a potential cognitive biomarker in unimpaired versus MCI older adults using the visual paired comparison (VPC) eye tracking task. As a powerful eye tracking approach, the VPC (commonly referred to as the preferential viewing task) is a nonverbal recognition task that has demonstrated promising evidence for detecting cognitive impairments associated with MCI through analyzing eye movement patterns. Hypothesis 4a: Older individuals with MCI will exhibit diminished eye movement markers (diminished preference for viewing novel versus familiarized stimuli) and EEG markers (P300 and synchrony of theta oscillations) of memory compared to healthy individuals. Hypothesis 4b: Preferential viewing for novel stimuli will be positively associated with EEG markers of memory (P300 and synchrony of theta oscillations). The eye tracking VPC task will first be piloted in older healthy controls in order to optimize the parameters of the eye tracking technology to ensure optimal performance prior to administering in MCI individuals.
Exploratory Objective 5: 5a: We will explore, in both HC and MCI participants, the relationships between wisdom as measured using the Jeste-Thomas Wisdom Index (JTWI) before baseline PAS-EEG and DLPFC plasticity at baseline. 5b: We will explore, in both HC and MCI participants, change in wisdom on JTWI as administered after baseline PAS-EEG in response to single PAS session. 5c: We will explore, in MCI participants only, change in wisdom after the 10-session course of PAS or PAS-C by administering JTWI before and after each follow-up PAS-EEG session.
Enrollment
Sex
Ages
Volunteers
Inclusion and exclusion criteria
MCI Group:
Inclusion Criteria:
Age 60 years or above.
Right-handed (to minimize heterogeneity with respect to cognitive reserve and plasticity) and as determined by the Edinburgh Handedness Questionnaire.
Diagnosis of MCI due to AD using the core clinical criteria by the National Institute on Aging and Alzheimer's Association for MCI participants (NIA-AA) and ascertained by a study investigator. The following checklist will be used to ascertain the MCI diagnosis:
Objective evidence of single or multi domain MCI, where single domain MCI refers to deficits using NP battery on only one of the cognitive domains (Speed of Processing; Working Memory; Executive Functioning; Verbal Memory; Visual Memory; Language)and multi domain MCI refers to deficits in more than one of these domains. To determine impairment in one or more cognitive domain, after the NP battery is administered and double scored, a consensus meeting will be held with the research study staff, the study Principal Investigator and the study Neuropsychologist during which eligibility will be discussed. The meeting attendees will take into consideration the participant's education, parental education, pre-morbid IQ, physician's assessment and NP scores to determine if the participant has impairment in one or more cognitive domain.
Willingness to provide informed consent.
Ability to read and communicate in English (with corrected vision and hearing, if needed).
Exclusion Criteria:
Healthy Controls
Inclusion Criteria:
Exclusion Criteria:
Primary purpose
Allocation
Interventional model
Masking
150 participants in 3 patient groups
Loading...
Central trial contact
Dewi Clark, MHSc; Sanjeev Kumar, MD
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal