Status
Conditions
Treatments
About
The risk of complications associated with airway management in obese patients is significant. The results of pre-oxygenation allow a prolonged non-hypoxic apnea time for the clinician. The increase in FRC and non-hypoxic apnea time is correlated. The best condition to accomplish the pre-oxygenation in morbidly obese patient is still undetermined in medical literature.
This study is designed to evaluate the effect of different positions combined with different ventilation modes during the pre-oxygenation phase of anesthesia's induction. EPO2: PV will evaluate the effect of different combinations of positions and ventilation modes on pulmonary volumes (mainly functional residual capacity) in a morbidly obese volunteer.
Full description
Complications related to airway management are the major contributing factor to morbidity in anesthesiology. This risk of complications markedly increases when faced with a difficult airway in an obese patient. Pre-oxygenation creates a safety margin by increasing the patient's oxygen stores, through a higher functional residual capacity (FRC). When pre-oxygenated, the clinician may proceed to intubation after a variable period of apnea, while maintaining oxygen saturation over 92%. In non-obese individuals, pre-oxygenation allows a non-hypoxic apnea time of eight minutes. In the obese population, however, this non-hypoxic apnea time decreases to two to three minutes.
Different methods of pre-oxygenation have been proposed in order to increase apnea time before significant oxygen desaturation. Amongst these methods, the following are of particular interest: pre-oxygenation to vital capacity, pre-oxygenation with spontaneous ventilation and positive pressure, and pre-oxygenation with elevated head positioning ("beach-chair"). These methods have been extensively studied in individuals of normal height and weight.
The main objective of pre-oxygenation is to raise oxygen levels available at the alveolar level in order to increase the non-hypoxic apnea time, before a significant desaturation occurs. This raised alveolar oxygen concentration can be done by maintaining a higher inspired oxygen fraction and by promoting a larger FRC which is the oxygen reserve build through the pre-oxygenation phase. In morbid obese patients, these parameters are affected by a lower expiratory flow, lower expiratory flow and closing of small radius airways. The final result probably come from a more cephalad position of the diaphragm induced by a larger intra-abdominal volume.
Actually, different studies demonstrate the advantage of a beach-chair position and non-invasive positive pressure ventilation for pre-oxygenation of obese patients. These advantages are shown by a shorter time of pre-oxygenation to obtain an end-tidal O2 > 90 % and a longer non-hypoxic apnea time (Sat O2 >90%). Up to date, there is no published data on the FRC as a result of different combinations of position and ventilation mode. This study will evaluate FRC by helium dilution technique.
We propose a crossover randomised trial on volunteers waiting for a bariatric surgery. We want to compare, in pre-oxygenation situation, without induction of general anesthesia, the effect of three positions and two ventilation modes on the FRC measure.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
20 participants in 3 patient groups
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal