Status and phase
Conditions
Treatments
About
Objective
Ionotropic glutamate receptors are ligand-gated ion channels responsible for most of the excitatory neurotransmission in the mammalian central nervous system (CNS). Based on pharmacology, they have been grouped into three subtypes-NMDA, AMPA and kainate. In recent years it has become apparent that the receptors do not function alone, but in the company of auxiliary proteins that regulate their activity [1]. Some of these have been shown to modulate AMPA receptor trafficking, gating and pharmacology and are classified as transmembrane AMPA receptor regulatory proteins, or TARPs ( >=-2, >=-3, >=-4, >=-5, >=-7, and >=-8). Genetic data indicate a possible role of TARPs in schizophrenia, depression, epilepsy, neuropathic pain, and bipolar disorder [1]. In a preclinical collaboration with Eli Lilly, we developed a promising radioligand, 18F-TARP252 to image TARP >=-8 using positron emission tomography (PET).
This protocol covers three phases:
Study Population
Healthy adult female and male volunteers (n=22, ages 18 - 55) will undergo brain imaging. An additional eight healthy volunteers will undergo whole body dosimetry analysis.
Design
For quantification of TARP >=-8, 22 healthy controls will have brain PET imaging using 18F-TARP252 and an arterial line. Some of them will have a test-retest scan. Eight additional subjects will have a whole body PET scan for dosimetry. For dosimetry, no arterial line will be used.
Outcome Measures
To assess quantitation of TARP >=-8 with 18F-TARP252, we will primarily use two outcome measures: the identifiability and time stability of distribution volume calculated with compartmental modeling. In test-retest study, we will calculate the retest variability. We will assess whole-body biodistribution and dosimetry of 18F-TARP252 by calculating doses to organs and effective dose to the body.
Full description
Objective
Ionotropic glutamate receptors are ligand-gated ion channels responsible for most of the excitatory neurotransmission in the mammalian central nervous system (CNS). Based on pharmacology, they have been grouped into three subtypes-NMDA, AMPA and kainate. In recent years it has become apparent that the receptors do not function alone, but in the company of auxiliary proteins that regulate their activity [1]. Some of these have been shown to modulate AMPA receptor trafficking, gating and pharmacology and are classified as transmembrane AMPA receptor regulatory proteins, or TARPs ( >=-2, >=-3, >=-4, >=-5, >=-7, and >=-8). Genetic data indicate a possible role of TARPs in schizophrenia, depression, epilepsy, neuropathic pain, and bipolar disorder [1]. In a preclinical collaboration with Eli Lilly, we developed a promising radioligand, 18F-TARP252 to image TARP >=-8 using positron emission tomography (PET).
This protocol covers three phases:
Study Population
Healthy adult female and male volunteers (n=22, ages 18 - 55) will undergo brain imaging. An additional eight healthy volunteers will undergo whole body dosimetry analysis.
Design
For quantification of TARP >=-8, 22 healthy controls will have brain PET imaging using 18F-TARP252 and an arterial line. Some of them will have a test-retest scan. Eight additional subjects will have a whole body PET scan for dosimetry. For dosimetry, no arterial line will be used.
Outcome Measures
To assess quantitation of TARP >=-8 with 18F-TARP252, we will primarily use two outcome measures: the identifiability and time stability of distribution volume calculated with compartmental modeling. In test-retest study, we will calculate the retest variability. We will assess whole-body biodistribution and dosimetry of 18F-TARP252 by calculating doses to organs and effective dose to the body.
Enrollment
Sex
Ages
Volunteers
Inclusion and exclusion criteria
EXCLUSION CRITERIA:
Exclusion criteria for the dosimetry subjects are the same as reported above, with the exception of MRI contraindications, because an MRI will not be performed in these subjects.
Primary purpose
Allocation
Interventional model
Masking
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal