Status
Conditions
Treatments
About
The risk of cardiovascular diseases from red meat consumption varies among individuals due to variations in gut microbiota. L-carnitine in red meat can be converted to TMAO in the body by certain bacteria. Not everyone experiences a significant increase in TMAO levels after consuming carnitine. Gut microbiota differences are observed between high and low TMAO producers. The presence of the gbu gene in gut microbiota is linked to TMAO production. This clinical research aims to determine if the gbu gene can predict TMAO levels after dietary carnitine intake.
Full description
The risk of developing cardiovascular diseases due to the consumption of red meat varies among individuals, and this may be attributed to differences in the composition and function of gut microbiota. Studies have found that red meat, rich in L-carnitine, may be metabolized by certain anaerobic bacteria in the intestines to produce trimethylamine N-oxide (TMAO) in the human body. Previous research utilizing the oral carnitine challenge test (OCCT) revealed that not everyone experiences a significant increase in blood TMAO levels after consuming carnitine. Moreover, individuals with high TMAO production and low TMAO production showed distinct differences in their gut microbiota.
Furthermore, we have discovered a significant correlation between the abundance of the gbu gene in gut microbiota and the production of TMAO in response to dietary carnitine intake. Therefore, through the design of clinical research, we aim to investigate and assess whether the abundance of the gbu gene in gut microbiota can predict the levels of TMAO produced in the human body under dietary carnitine intake.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
230 participants in 1 patient group
Loading...
Central trial contact
Wei-Kai Wu, MD/PhD
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal