Status
Conditions
Treatments
About
Recent work has confirmed the diagnostic performance of pseudo-CT sequences for detecting osteolytic lesions. Their integration into whole body MRI (WB MRI) could transform the diagnostic approach to MM, by allowing a combined assessment of bone marrow involvement, tissue viability and osteolysis, during a single non-irradiating imaging examination. Since the preliminary work mentioned above, optimizations have been made to the pseudo-CT sequences, including the addition of deep learning (correcting noise in the images) and the correction of chemical shift artifact (linked to the coexistence of hydrated tissue and fatty tissue), which carry real hope of improving their diagnostic potential and accuracy.
Full description
Currently recommended imaging techniques for detecting bone lesions include whole-body MRI (WB-MRI), computed tomography (CT), and PET-CT. WB-MRI and PET-CT outperform CT for assessing treatment response, with WB-MRI already being the imaging modality of choice in many countries. However WB-MRI, the technique of choice for detecting bone marrow involvement, does not allow visualization of mineral bone, limiting its ability to accurately assess osteolysis. Zero Echo Time (ZTE) and Lava Flex Low Flip Angle (LF) MRI sequences represent a major advance, providing visualization of tissues at very short T2 relaxation times with resolution close to that of CT. These new sequences (known as pseudo-CT or pseudo-CT) offer for the first time the opportunity to study mineral bone by MRI, thus considerably increasing the diagnostic potential of this modality in MM.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Patient with newly diagnosed multiple myeloma, for whom bone imaging is required for staging.
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
45 participants in 1 patient group
Loading...
Central trial contact
Frédéric Lecouvet; Perrine Triqueneaux
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal