Status
Conditions
Treatments
Study type
Funder types
Identifiers
About
The present study addresses whether placebo effects can possibly account for previous findings in the field, as well as ascertains whether placebo-based mechanisms can be deliberately harnessed for impact. The design is a 2 (positive expectations/negative expectations) x 2 (true cognitive training intervention x control cognitive training intervention) Randomized Controlled Trial (RCT). Participants will be recruited from site-affiliated participant pools or email lists.
Participants will first undergo a pre-test battery where various cognitive abilities are assessed via computerized programs. They will also fill out various surveys about personality traits/internal dispositions that may predict the extent to which they are susceptible to placebo effects.
After pre-testing, participants will be randomized to an expectations group (positive/negative) and a training protocol (active/control). Participants are then given their group appropriate expectation script. In the positive expectations group, participants receive training described as having previous research supporting its use as a method to enhance cognitive abilities. In the negative expectations group, participants receive training described as having previous research suggesting that it is unlikely to change cognitive abilities or may even decrease cognitive abilities.
The participants will then be given instructions regarding how to do their training task. Participants will be asked to complete 10 sessions of training within 15 days. The active training will be a standard working memory (N-back) training task. The control training will be a trivia/quiz training task.
After they have completed 10 sessions, participants will complete a "mid-test" session to undergo a battery of perceptual/cognitive tasks. Participants will be told that the perceptual/cognitive tests are identical to those that they took at pre-test. However, in reality, for participants in the "positive expectations" groups, these will be altered to actually be easier than they were at pre-test. For participants in the "negative expectations" groups the tasks will be made more difficult.
Participants will then be asked to complete another set of 10 training sessions on their devices within 15 days before completing the post-test. The post-test will be identical to the pre-test. All participants will then be extensively debriefed (e.g., all deceptions will be made clear). On a separate day, participants will then complete a second post-test that is identical to the pre-test and first-post test.
Full description
This study examines the extent to which working memory training may give rise to cognitive benefits and the extent to which these effects can be explained by, or augmented by, placebos.
It is predicted that:
Participants will be assigned to either an online or in-person version of the study depending upon the guidelines for participant interactions that are in force at the time (if only one version is allowable under current guidelines participants will be assigned to the allowable version).
Pre-Test Cognitive Assessments: For each domain, two separate measures will be utilized to ensure that any observed results are not specific to a given tasks, but are more generally representative for the six cognitive domains below.
Pre-Test Individual Differences Surveys: At Pre-test, participants will complete a series of surveys to assess demographic variables (e.g., age, gender, race/ethnicity, SES) as well as other individual difference factors that may be predictive of placebo-responsiveness. These include: Big 5 Personality Traits, Work and Family Orientation Scale (WOFO), Grit, Behavioral Avoidance/Inhibition scales (BIS/BAS), theories of intelligence, Schutte Self-Report Emotional Intelligence Test, and Meta-Cognitive Skills Scale.
Training Conditions: Participants will be assigned to either an experimental training condition (N-back training, which previous research has shown is associated with enhancements in general cognitive function) or a control training condition (explicit knowledge training, which previous research has shown is not associated with enhancements in general cognitive function). The cognitive training task will be an adaptive version of a visual N-back task used previously. Participants will be presented with a series of objects and will be asked to indicate whether the current stimulus matches the one presented n positions back in the sequence. An active knowledge training task (control) will be used in which participants will be asked to answer Graduate Record Examination-type (GRE) general knowledge, vocabulary, and trivia questions selected from a pool of approximately 5,000 questions. For every question, participants are required to pick one of four answer alternatives presented below the question and after their response are given the correct answer.
Explicit Expectation Induction: Participants will be assigned to either positive or negative expectations induction, which will be delivered via a slideshow. All instructions and descriptions of the to-be-trained task in the Positive Expectations groups will be designed to maximize participant belief in the effectiveness of the given training in inducing positive change in cognitive abilities or minimize participant belief in the Negative Expectations groups.
Associative Learning Mid-Tests: For the associative learning mid-tests, the same basic cognitive tasks employed at Pre-test will be altered to either provide evidence to the participant of "improved cognitive performance" (positive associative learning) or "diminished cognitive performance" (negative associative learning).
Working Memory Mid-Test Associative Learning Manipulations:
O-Span: In the O-Span Associative Learning Mid-Test, task difficulty will be manipulated by either lessening the difficulty of the interleaved math problems (e.g., by using problems that only contain small numbers) or increasing the difficulty of the interleaved math problems.
Cognitive Flexibility Mid-Test Associative Learning Manipulation:
Task-switching: In the task-switching test, several factors make the test more difficult. First is the number of task switches - fewer switch trials results in overall better performance. Second are the digits themselves. For instance, in the high/low task, digits closer to 5 are responded to more slowly than digits further from 5. Thus, in the Task-Switching Associative Learning Mid-Tests, the switch rate will be reduced (easier) or increased (harder) relative to the true assessments, and the distribution of digits that are displayed will include a greater or lesser percentage of easier items.
Countermanding: In the Countermanding test, difficulty is most strongly associated with the presence of incongruent trials as well as switch trials. Thus, the Countermanding Mid-Test will have decreased or increased proportions of incongruent and switch trials from 50% to 30%/70%, respectively.
Visual Selective Attention Mid-Test Associative Learning Manipulation:
UFOV: In the case of the UFOV, the simplest method to decrease difficulty is to increase presentation duration. Thus, in the UFOV Associative Learning Mid-tests, the proportion of long presentation duration trials will be increased (easier) or decreased (more difficult).
ANT: In the case of the ANT, the Associative Learning Mid-tests will be made easier by increasing the proportion of neutral trials or made more difficult by decreasing the proportion of neutral trials and increasing the proportion of incompatible (most difficult) trials.
Spatial Cognition Mid-Test Associative Learning Manipulation:
Mental Rotation: Difficulty in mental rotation is monotonically related to the degree of rotation between the two items (larger rotations = more difficult). The Mental Rotation Associative Learning Mid-tests will thus be constructed to contain a disproportionate number of items with either small (easier) or large (more difficult) orientation differences.
Paper Folding: In the paper folding task, more difficult trials involve not only more total folds, but more partial folds and more angled partial folds. The Paper Folding Associative Learning Mid-tests will thus contain a disproportionate number of low total folds/low partial folds trials (easier) or high total folds/high partial folds trials (more difficult).
Fluid Intelligence Mid-Test Associative Learning Manipulation: All matrix items that will be utilized have a known level of difficulty. Thus, the Fluid Intelligence Associative Learning Mid-test sets will be created by mixing in a disproportionate number of easier/more difficult items for both Raven's and new matrix task created by PIs Seitz and Jaeggi.
Vocabulary Mid-Test Associative Learning Manipulation: As with the fluid intelligence test, the items have known levels of difficulty, and thus, the Associative Learning Mid-test will have a disproportionate number of easier/more difficult items for both the Mill-Hill vocabulary and the Shipley Institute of Living scales.
Knowledge of the Hypothesis Scales: Prior to Post-Test1, participants will be given two measures - the Perceived Awareness of the Research Hypothesis scale and the Expectation Assessment scale. Both measures are designed to assess the extent to which participants have internalized/believed the expectations that were meant to be induced.
Unblinding: Participants in all groups will be given a thorough debriefing after Post-Test1 and before Post-Test2 as to the goals of the study, the conditions, and any deception that they may have been subject to.
Post-Test1 and 2 will be identical to the Pre-test cognitive tests (new trials/items will be used in all cases).
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
287 participants in 4 patient groups, including a placebo group
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal