Status
Conditions
Treatments
Study type
Funder types
Identifiers
About
Given the accelerating growth of older adults worldwide and the decline in cognitive function with aging, therapeutics that remediate age-related cognitive decline are needed more than ever. The proposed research seeks to better understand and enhance the detection of exercise effects on hippocampal network function and learning and memory, which decline with aging and Alzheimer's. Success would lead to new ways to detect benefits of exercise on cognitive aging and would lead to mechanistic insight on how such plasticity is possible while also informing prevention strategies.
Full description
Animal models robustly support that exercise protects brain areas vulnerable to aging such as the hippocampus and that these benefits lead to better learning. In contrast, there are mixed findings from human studies on the cognitive benefits of exercise with healthy older adults. This contrast indicates there is still a lack of understanding for how exercise could change the course of cognitive decline in aging adults. However, no human studies have comprehensively tested exercise effects on cognition in older adults with learning tasks inspired from basic exercise neuroscience. The objective in the proposed research is to fill this translational gap by determining if different types of exercise improve the same kinds of learning in older adults that have been shown to improve in animal models by improving hippocampal function. This will bring the investigators closer to a long-term goal of determining how exercise protects the brain from adverse effects of aging in order to develop interventions that minimize age-related cognitive decline. The overall hypothesis is that exercise improves learning when it increases functional hippocampal-cortical communication that otherwise declines with aging. The investigators will test this in a sample of healthy older adults by determining if increases in functional hippocampal-cortical connectivity from exercise training improve learning on an array of tasks that require the hippocampus for acquisition of new relational memories compared to conditions of the same tasks that should not require the hippocampus for learning and memory.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
122 participants in 2 patient groups
Loading...
Central trial contact
Michelle W Voss, PhD
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal