Status
Conditions
Treatments
About
Although direct evidence is currently lacking, the high identity between SARS-CoV-1 and SARS-CoV-2 suggests, that the latter viral strain could also infect the Central Nervous System (CNS). Indeed, some cases of SARS-COV2 encephalitis begin to be described and CNS damages are increasingly highlighted in the literature, but still not objectified by imaging and do not allow to explain the entire clinical patterns. We hypothesise that these CNS damages are not always objectified by Magnetic Resonance Imaging (MRI) but could be indirectly observed by a physiological dysfunction of neural conduction in the brainstem. We will explore brainstem disruption through an electrophysiological approach.
Full description
Clinical and preclinical data from studies with other coronaviruses suggest an evident neurotropism, which may result in more complex clinical scenarios. Can the SARS-CoV-2 enter the Central Nervous System (CNS) and infect neural cells ? And if yes, how the CNS damage contributes to pathophysiology of the COVID-19, to its signs, symptoms and progression as well as to its sequelae. It has been demonstrated that coronaviruses such as SARS-CoV and MERS-CoV do not limit their presence to the respiratory tract and frequently invade the CNS. The intranasal administration of SARS-CoV-1 or MERS-COV resulted in the rapid invasion of viral particles into the brain of mice, possibly through the olfactory bulb via trans-synaptic route. The brainstem, which hosts the respiratory neuronal circuit in the medulla, was severely infected with both types of viruses, which may contribute to degradation and failure of respiratory centres.
Enrollment
Sex
Ages
Volunteers
Inclusion and exclusion criteria
Inclusion Criteria :
Exclusion Criteria :
Primary purpose
Allocation
Interventional model
Masking
38 participants in 1 patient group
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal