Status
Conditions
Treatments
About
Aim of study:
To collect data for a new image-guided diagnostic algoritm, enabling the investigators to differentiate more precisely between benign and malignant pigmented tumours at the bedside. This study will include 60 patients with four different pigmented tumours: seborrheic keratosis (n=15), dermal nevi (n=15), pigmented basal cell carcinomas (n=15), and malignant melanomas (n=15), these four types of tumours are depicted in Fig.1, and all lesions will be scanned by four imaging technologies, recruiting patients from Sept 2019 to May 2020. In vivo reflectance confocal microscopy (CM) will be used to diagnose pigmented tumours at a cellular level and provide micromorphological information5;6. Flourescent CM will be applied to enhance contrast in surrounding tissue/tumours. Optical coherence tomography (OCT), doppler high-frequency ultrasound (HIFU) and photoacustic imaging (also termed MSOT, multispectral optoacustic tomography) will be used to measure tumour thickness, to delineate tumours and analyze blood flow in blood vessels. Potential diagnostic features from each lesion type will be tested. Diagnostic accuracy will be statistically evaluated by comparison to gold standard histopathology
Full description
Study design The prospective non-blinded clinical study will include with seborrheic keratosis (n=15), dermal nevi (n=15), pigmented or dark basal cell carcinomas (n=15), and malignant melanomas (n=15) referred to or diagnosed at Dept. of Dermatology, Bispebjerg Hospital. All tumours are histologically verified by skin biopsy. To explore clinical feasibility and diagnostic accuracy of four different skin imaging technologies all patients will be scanned by an experienced examiner in one 2-hour session. If patients demonstrate more than one skin tumour within the same anatomical location, all lesions will be included and scanned. Lesions in other anatomical areas of the same patient will not be included. The total extra time spend in the department to participate in this study will be approximately 2-3 hours for each patient. Only one visit is required to participate. The skin tumors in patients enrolled will subsequently be treated according to hospital and national guidelines.
Background: A bedside examination of a skin tumours using advanced imaging technology is considered a valuable future tool for Dermatologists. The investigators vision is to provide image guided skin cancer therapy to all patients with skin tumours. This study compares clinical feasibility and diagnostic accuracy of four different imaging technologies applied in a fast-track bedside analysis of various skin tumours; four different types, 2 benign and 2 malignant types.
It is also hypothesized that:
Study objectives
Primary objective:
This study explores the clinical utility of four skin imaging technologies: scanning time, clinical feasibility (does the skin tumour fit into the scanning probe) and diagnostic accuracy. The investigators examine patients with four different common skin tumour types referred to Dept of Dermatology, BFH using four different advanced imaging technologies; five different tools as investigators apply two different OCT-systems.
Secondary outcome measures:
Evaluation of skin tumours All skin tumours will be evaluated clinically, by two different OCT systems (C-OCT and UHR-OCT), by RCM, by photoacoustic imaging and doppler HIFU. Skin biopsies will be performed according to standard hospital procedures. Skin punch biopsies from skin tumours are required for treatment planning and is not part of this research project. Accordingly, a skin biopsy will be performed as part of the treatment plan independent of whether the patient is recruited or not.
Imaging Technologies In vivo reflectance confocal microscopy (CM) will be used to diagnose pigmented tumours at a cellular level and provide micromorphological information5;6. Flourescent CM will be applied to enhance contrast in surrounding tissue/tumours. Optical coherence tomography (OCT), doppler high-frequency ultrasound (HIFU) and photoacustic imaging (also termed MSOT, multispectral optoacustic tomography) will be used to measure tumour thickness, to delineate tumours and analyze blood flow in blood vessels. Potential diagnostic features from lesion types will be tested. Diagnostic accuracy will be statistically evaluated by comparison to gold standard histopathology The imaging methods OCT, RCM and doppler ultrasound, are technologies that are routinely used in the clinic at Dept of Dermatology, BFH and all investigators are highly trained in using the scanners. The UHR-OCT is a prototype and the photoacoustic system is a brand-new clinical device. OCT, RCM and ultrasound examinations are performed in a darkened room. The images of all patients will be saved in a digital archiving computer system for subsequent scoring and further evaluation.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
41 participants in 1 patient group
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal