Status
Conditions
Treatments
About
Hemodynamic and fluid optimization during perioperative period can reduce postoperative morbidity. The assessment of preload and determination of whether the patient is fluid responsive is still challenging. Static preload indices such as central venous pressure are not accurate to assess fluid responsiveness contrary to dynamic preload indices such as pulse pressure variation (PPV) and stroke volume (SV) variation. However, such indices suffer from several limitations and should be used under strict conditions. Alternative dynamic methods such as lung recruitment maneuvers (LRM) have been developed LRM can be used to reopen or prevent collapsed lung under mechanical ventilation so as to decrease respiratory complications. LRM induces a transient increase in intra-thoracic pressure and decreases in venous return, leading to a decrease in left ventricular end-diastolic area and stroke volume. Several studies have shown that the PEEP-induced decrease in stroke volume is related to pre-existing preload responsiveness. Few studies have also shown that LRM can represent a functional test to predict fluid responsiveness. However, monitoring stroke volume during LRM to assess fluid responsiveness is costly, and cardiac output devices may not be reliable. In this context, central venous pressure (CVP) or systemic arterial parameters monitoring are easily accessible and inexpensive during major surgery.
Full description
The aims of the current study were
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
18 participants in 1 patient group
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal