Status
Conditions
Treatments
About
Background:
Objectives:
- To study the amount and distribution of two types of dopamine receptors.
Eligibility:
Design:
Full description
OBJECTIVES
Dopaminergic (DA) modulation of brain function is disturbed in several disabling psychiatric disorders and represents the target of key psychopharmacologic agents, such as neuroleptics. Schizophrenia has been considered a prototype of dysregulated DA signaling, with associated prefrontal cortex (PFC) dysfunction. Prevailing views attribute key symptoms of schizophrenia to deficient DA signaling within mesocortical DA tracts. Little is known, however, about the pre-, intra-, and post-synaptic processes that contribute to dopaminergic dysregulation. Regional cortical DA activity, critical to these processes, has been difficult to measure in patients with the available imaging techniques. The current clinical study aims to address this open issue by taking advantage of two recently developed positron emission tomography (PET) radioligands, [(11)C]NNC-112 and [(18)F]Fallypride, that bind differentially and with a higher binding potential (BP) than previous compounds to the D(1) (NNC-112) or D(2/3) (fallypride) receptors. By measuring the regional BP of these two compounds, cortical and subcortical DA receptor anomalies will be characterized in schizophrenia. Within the Clinical and Translational Neuroscience Branch (CTNB), this PET protocol is expected to add crucial information about DA receptor status to ongoing regional cerebral blood flow (rCBF), magnetic resonance imaging (MRI), magneto-encephalography (MEG) and genetic studies. It will lead to an improved understanding of the modulatory influence of DA on frontal lobe functioning and facilitate the study of how genetic polymorphisms interact with regional changes in D(1) and D(2/3) receptors to increase the risk for schizophrenia.
Some specific hypotheses to be tested are as follows:
D1 BP in frontal cortex will be affected by age, elevated in schizophrenia and inversely correlated with cognitive performance in patients and healthy controls.
Cortical D2/3 receptor BP will be affected by age and inversely correlated with performance on tests of frontal lobe function in patients and healthy controls.
Striatal D2/3 receptor BP will be altered in patients.
Polymorphisms in the catechol-O-methyl transferase (COMT), D1 and D2 genes as well as other schizophrenia risk genes will affect DA receptor BP in frontal cortex.
The ratio of cortical D1 and D2/3 receptor BPs will be affected by age and related to risk for schizophrenia, cognitive performance and polymorphisms in the COMT gene and other schizophrenia risk genes
STUDY POPULATION
It will include 100 patients with schizophrenia, schizoaffective disorder or other psychotic disorders aged 18-60, and 230 healthy controls, aged 18-90. Fifty of the controls will be matched to the patients by age and sex.
DESIGN
Dopamine D(1) and D(2/3) receptor regional binding potentials (BP) will be quantified by PET in medication-free patients and controls. High resolution T1-weighted magnetic resonance imaging (MRI) scans will be obtained for co-registration purposes. Additionally, through enrollment in other ongoing protocols (00-M-0085, 90-M-0014, 01-M-0232, 95-M-0150, 89-M-0160), rCBF, functional MRI, cognitive and genetic data will be obtained and compared with D(1) and D(2/3) receptor BP data obtained from this protocol.
OUTCOME MEASURES
Brain dopamine D(1) and D(2/3) receptor regional binding potentials measured by [[(11)C]NNC-112 and [(18)F]Fallypride PET.
Enrollment
Sex
Ages
Volunteers
Inclusion and exclusion criteria
EXCLUSION CRITERIA:
-Subjects will be excluded if they don t fit the study requirements regarding age, ability to provide informed consent, absence of significant general medical, neurological or psychiatric disorders (except the disorder object of study), or intake of substances that
interfere with central dopaminergic signaling.
283 participants in 2 patient groups
Loading...
Central trial contact
Karen F Berman, M.D.; Jasmin S Bettina, Ph.D.
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal